Molecular cloning and characterization of a brassinosteroid biosynthesis-related gene **PtoDWF4** from Populus tomentosa

Yun Shen1,†, Yongli Li1,†, Dan Xu1, Chen Yang1, Chaofeng Li2 and Keming Luo1,2,3

1Key Laboratory of Eco-environments of Three Gorges Reservoir Region, Ministry of Education, Chongqing Key Laboratory of Transgenic Plant and Safety Control, Institute of Resources Botany, School of Life Sciences, Southwest University, Chongqing 400715, China; 2Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, 810008 Xining, China; 3Corresponding author (keming@swu.edu.cn)

Received May 24, 2017; accepted February 22, 2018; handling Editor Janice Cooke

Brassinosteroids (BRs) as steroid hormones play an important role in plant growth and development. However, little is known about how BRs affect secondary wall biosynthesis in woody plants. In this study, we cloned and characterized **PtoDWF4**, a homologous gene of Arabidopsis **DWF4** encoding a cytochrome P450 protein, from Populus tomentosa. qRT-PCR analysis showed that **PtoDWF4** was highly expressed in stems, especially in xylem. Overexpression of **PtoDWF4** (**PtoDWF4-OE**) in poplar promoted growth rate and biomass yield, increased area and cell layers of xylem. Transgenic plants showed a significant increase in plant height and stem diameter compared with the wild type. In contrast, the CRISPR/Cas9-generated mutation of **PtoDWF4** (**PtoDWF4-KO**) resulted in significantly decreased biomass production in transgenic plants. Further studies revealed that constitutive expression of **PtoDWF4** up-regulated the expression of secondary cell wall (SCW) biosynthesis-related genes, whereas knock-out of **PtoDWF4** down-regulated their expression. Quantitative analysis of cell wall components showed a significant increase in **PtoDWF4-OE** lines but a reduction in **PtoDWF4-KO** lines compared with wild-type plants. Taken together, our results indicate that **PtoDWF4** plays a positive role in improving growth rate and elevating biomass production in poplar.

Keywords: biomass, brassinosteroid, **DWF4**, lignin biosynthesis, poplar, secondary cell wall.

Introduction

Brassinosteroids (BRs) as plant steroid hormones were first discovered from the pollens of *Brassica napus* in 1979 (Grove et al. 1979). It is well known that BRs play essential roles in plant physiological and developmental processes, such as embryonic development, cell expansion and differentiation (Clouse and Sasse 1998), vascular formation (Ibañes et al. 2009), crop improvement (Vriet et al. 2012), in response to abiotic and biotic stresses (Sahni et al. 2016). Mutants defective in BR biosynthesis or signal transduction display stunted growth, including short petioles, rounded and curled leaves, pleiotropic dwarf phenotypes and accelerated senescence (Clouse et al. 1996, Fujoka et al. 1997, Choe et al. 1998).

Over the past decades, the BR-biosynthetic pathways have been illuminated in higher plants. Brassinolide (BL), which represents as the most active BR, is synthesized from campesterol (CR) through two parallel pathways, which are called the early and the late C-6 oxidation pathways (Vriet et al. 2013). Meanwhile, some BR signaling pathway components were also identified (Wang and He 2004). For example, BRASSINOSTEROID INSENSITIVE1 (**BRI1**), which acts as a leucine-rich membrane-localized protein, can interact with **BRI1-ASSOCIATED RECEPTOR KINASE** (**BAK1**) to modulate BR signaling (Kinoshita et al. 2005). Other BR regulatory proteins, including BRASSINOSTEROID INSENSITIVE2 (**BIN2**), **BRI1** inhibitory protein **BK1**, **BR-signaling kinase 1** (**BSK1**), 14-3-3 proteins, **BRI1 SUPPRESSOR 1** (**BSU1**), **BRI1-EMS SUPPRESSOR**...
(BES1) and BRASSINAZOLE-RESISTANT1 (BZR1), are also identified via various genetic and biochemical approaches (Wang et al. 2004, Mora-García et al. 2004, Wang and Chory 2006, Ryu et al. 2007, Tang et al. 2008, Yu et al. 2011). Evidence to date suggests that BRs signal is perceived by plasma membrane-localized receptor kinase BR1, and transduced into the nucleus through these signaling components (Kinosita et al. 2005).

BRs are synthesized from campesterol through a series of enzymatic steps. Several genes encoding these key enzymes in BR-biosynthetic pathway have been isolated from many plant species, such as Arabidopsis, rice (Oryza sativa) and tomato (Solanum lycopersicum) (Chung et al. 2010, Yokot et al. 1997). DEETIOLATED2 (DET2) is associated with catalyzing a 5α-reduction step of multiple related sterols during BR biosynthesis (Fujik et al. 1997). The de-etiolated2 (det2) mutant with a dwarfed phenotype was firstly identified from Arabidopsis (Chory et al. 1991) and also obtained from pea (Nomura et al. 2004). Through investigation on the mutants with severely pleiotropic phenotypes, other key BR-biosynthetic genes, including CONSTITUTIVE PHOTOMORPHOGENESIS AND DWARFISM (CPD; Szekeres et al. 1996), DWARF4 (DFW4; Choe et al. 1998), ROTUNDIFOLIA3 (ROT3; Kim et al. 1998) and BR-6-oxidase1 (BR6ox1; Bishop et al. 1999), have also been identified in Arabidopsis and rice. These mutants defective in the BR-biosynthetic enzymes motioned above exhibit changed phenotypes such as dwarfism, delayed senescence, dark-green leaves, shorten petioles and short hypocotyls in darkness (Choe et al. 1998, Yu et al. 2011). Overexpression of AtDFW4 in B. napus enhanced abiotic and biotic stress tolerance and plant productivity (Sahni et al. 2016). Similarly, transgenic Arabidopsis overexpressing BdDFW4 from Brachypodium distachyon displayed long and slender phenotypes (Corvalán et al. 2017). Although DFW4 in herbaceous plants has been well identified, little information about its function is known in woody plants so far. More recently, ectopically expression of PeDFW4 from Populus euphratica in Arabidopsis resulted in an alteration of microstructure of inflorescence stems (Si et al. 2016), but the molecular mechanism remains largely unclear. In this study, we isolated PtoDFW4 from Populus tomentosa Carr., which was homologous to Arabidopsis DFW4, and determined its role in SCW formation during wood development. Overexpression of PtoDFW4 (PtoDFW4-OE) in poplar increased stem diameter and xylem cell layers, resulting in higher biomass in transgenic plants compared to the wild type, whereas a significant reduction in growth rate was found in transgenic PtoDFW4-knock-out (PtoDFW4-KO) poplars. Our results suggest that PtoDFW4 could be involved in the positive regulation of wood formation in poplar.

Materials and methods

Plant materials and growth conditions

Populus tomentosa Carr. (Clone 741) plants were grown in a greenhouse the conditions of 16/8 h light/dark cycle with the 4500 lux supplementary light at 22–25 °C and relative humidity ~60%. Poplar plants were watered according to the evapotranspiration demands during different growth stages and fertilized with 1/2 strength Hoagland nutrient solutions.

Sequence alignment and phylogenetic analysis

The amino acid sequences of DFW4 proteins and related cytochrome P450s used in our experiments were obtained from the NCBI website (http://www.ncbi.nlm.nih.gov/BLAST/) (Altschul et al. 1990), using DFW4 proteins of Arabidopsis thaliana and rice (O. sativa) as a query. Multiple sequence alignments were performed with DNAMAN7.0 (Lynnon Corporation, USA) and the phylogenetic analysis of CYP proteins were performed with the software MEGA6 (Tamura et al. 2013).

Cloning of PtoDFW4

Total RNA was extracted from leaf samples using plant Trizol Reagent (Tiangen, China) The full-length cDNA fragment (1467 bp) of PtoDFW4 was amplified with gene-specific primers (see Table S1 available as Supplementary Data at Tree Physiology Online) based on PtoDWF4 (Potri.007G026500.1) by polymerase chain reaction (PCR). The PCR reaction was carried out with Pfu DNA polymerase (Takara, Dalian, China) in a total volume of

Tree Physiology Volume 00, 2018
50 μl at 98 °C for 2 min, 34 cycles of 98 °C for 15 s, 56 °C for 30 s, 72 °C for 1 min 30 s, followed by final extension of 72 °C for 10 min. The reaction system contained 25 μl of Primer star Max (TAKARA), 2 μl of each primer (Forward primer and Reverse primer), 2 μl of cDNA as DNA template, 19 μl of nuclease-free water. PCR products were purified and ligated into pMD19-T plasmid (Takara, Dalian, China).

Construction of the PtoDWF4-OE vector and generation of transgenic poplar plants
The full-length coding sequence (CDS) of PtoDWF4 was digested with BamHI restriction enzyme (Takara, Dalian, China), and ligated into plant binary vector pCXSN (Chen et al. 2009) via the same restriction site, under the control of Cauliflower mosaic virus (CaMV) 35S promoter. The resultant construct PtoDWF4-OE was introduced into Agrobacterium tumefaciens strain GV3101 by the freeze–thaw method (Hofgen and Willmitzer 1988).

Populus tomentosa transformation was carried out using A. tumefaciens-mediated leaf disc method (Jia et al. 2010). In brief, leaf discs of poplar were co-cultured in Woody Plant Medium (WPM), containing 2.0 mg l−1 zeatin (ZT), 1.0 mg l−1 1-naphthalene acetic acid (NAA) and 100 μM−1 acetylsyringone (AS), in dark for 48 h after infected with Agrobacterium. Two days later, the leaf discs were transferred to WPM medium with 2.0 mg l−1 ZT, 1.0 mg l−1 NAA, 400 mg l−1 cefotaxime (Cef), 9 mg l−1 hygromycin (Hyg) for callus induction. After one month of subculture in the dark, these leaf discs with calli were transferred to selective medium containing 1.0 mg l−1 NAA, 400 mg l−1 Cef, 9 mg l−1 Hyg. Subsequently, regenerated shoots were transferred to rooting medium with 0.1 mg l−1 NAA, 400 mg l−1 Cef, and 9 mg l−1 Hyg. After regeneration of roots, the seedlings were planted in the greenhouse. Genomic DNA extracted from leaves of transgenic plants was used for PCR analysis with gene-specific primers of Hyg gene. Expression levels of the transgenes in transgenic plants were determined by quantitative real-time PCR (qRT-PCR) using total RNA extracted from leaves. All primers are listed in Table S1 available as Supplementary Data at Tree Physiology Online.

CRISPR/Cas9-mediated mutation of PtoDWF4 in poplar
The pYLCRISPR/Cas9 vectors for multiplex genome targeting vector system of CRISPR/Cas9 were used for mutation of PtoDWF4 in poplar (Ma et al. 2015). The coding region of PtoDWF4 was monitored via ZiFiT Targeter (http://zfif.partners.org; Version 4.2) (Sander et al. 2010). Three CRISPR/Cas9 target sites of PtoDWF4 were chosen for the sgRNA sequences based on their location and GC percentage. These sgRNA cassettes were driven by Arabidopsis AtU3b, AtU6-1 and AtU6-29 promoters, respectively. The entire construction process was followed by Golden Gate Cloning, generating the resultant construct PtoDWF4-OE (Fan et al. 2015). Transgenic plants harboring PtoDWF4-KO were produced by Agrobacterium-mediated transformation as described previously (Jia et al. 2010).

To identify CRISPR/Cas9-mediated mutation of PtoDWF4 in transgenic poplar plants, genomic DNA was extracted from stems via the CTAB method. The PtoDWF4 genomic fragment was amplified using the gene-specific primers of PtoDWF4 (see Table S1 available as Supplementary Data at Tree Physiology Online). The amplified products were cloned into the pMD19-T Simple vector (Takara, Dalian, China) and then sequenced. The PtoDWF4-Cas9 transgenic lines (L15 and L17) were chosen for propagation. PCR genotyping and DNA sequencing was further confirmed in six regeneration plants of transgenic lines L15 and L17. At least 20 clones for each line were randomly selected for DNA sequencing.

Quantification of xylem relative area and SCW thickness
Xylem relative area and SCW thickness were measured by Image J software (Long et al. 2013). Three biological replicates were measured for each line.

Quantitative RT-PCR
Total RNA was extracted from different tissues of 5-month-old P. tomentosa plants including roots, the sixth internode of stems, the second young leaves, the 32nd mature leaves, by using the Trizol Reagent (Tiangen, China). qRT-PCR was performed on a TP700 Real-Time PCR machine (Takara, Japan) using the SYBR Green PCR master mix (Takara, Dalian, China). qRT-PCR was performed with a TP700 Real-Time PCR machine (Takara, Japan) using the SYBR Green PCR master mix (Takara, Dalian, China). The poplar 18S rRNA gene was used as the reference gene for internal standard. The primers used for qRT-PCR are listed in Table S1 available as Supplementary Data at Tree Physiology Online. Three biological and three technical replicates were carried out for each gene.

Measurement of BRs content
Stems of 6-month-old PtoDWF4-OE, PtoDWF4-KO and wild-type plants were used to measure the content of BRs in vivo. After cutting samples, add PBS (phosphate-buffered saline, pH 7.4) and then frozen with liquid nitrogen. BR levels were assayed by Plant Brassinolide (BR) ELISA Kit (Beijing Chenglin Biotechnology Company, China).

Histochemical staining of lignin
The sixth internode of the 5-month-old poplar stems were fixed in FAA buffer (formaldehyde: glacial acetic acid: 50% ethanol, 1:1:18). After embedding in paraffin, the stems were cross-sectioned by using an Ultra-Thin Semiautomatic Microtome (FINESSE 325, Thermo) and stained with 0.05% (w/v) toluidine blue O and then observed under Zeiss optical microscope (Zeiss, Oberkochen, Germany).

For histochemical staining, stem sections of poplar were hand-cut with a razor blade and an Ultra-Thin Semiautomatic Microtome
AcBr-soluble lignin was determined by an extinction coefficient meter (Shimadzu UV-2401 PC UV-VIS). The concentration of the absorbance was measured by a Bio UV-visible spectrophotometer. In addition, the software Revolution 1.6.1 was used following the manual.

Chemical analysis of SCW components

The sixth internode of 5-month-old poplars was used for chemical analysis of SCW components. Total lignin content was measured by classical Klason, acid-soluble and acetyl bromide-soluble (AcBr) lignin methods as previously described by Li et al. (2014). The absorbance was measured by a Bio UV-visible spectrophotometer (Shimadzu UV-2401 PC UV-VIS). The concentration of AcBr-soluble lignin was determined by an extinction coefficient of 20.01 g cm⁻¹. The content of cellulose and xylan was examined by the Van Soest method (Van Soest and Wine 1967). Each experiment repeated three times.

Scanning electron microscope analysis

To perform scanning electron microscope (SEM), cross sections were obtained by dissecting transversely with razor blade by hand and the samples were attached using double-sided stick tapes. The samples were observed by SEM (PhenomtmPure FEI, USA) following the manual’s recommendations and images were captured digitally. In addition, the software Revolution 1.6.1 was used to measure vessel cell wall thickness (µm).

Statistical analyses

The quantitative data were evaluated for statistical significance (P value) using Student’s t-test. All the tests were two-tailed. The data was normalized and all samples were normally distributed with homogeneity of variance.

Results

Isolation and characterization of PtoDWF4 from P. tomentosa

The full-length coding sequence of PtoDWF4 (Pttr.007G026500.1) was isolated from P. tomentosa Carr. according to the genome sequence data (http://genome.jgi-psf.org/Potrtl1/Potrtl1.home.html) using gene-specific primers (see Table S1 available as Supplementary Data at Tree Physiology Online) by reverse transcription PCR (RT-PCR). Sequence analysis results showed that PtoDWF4, which contained a full-length CDS with a length of 1467 bp, encoded a putative protein of 488 amino acid residues with a predicted molecular weight of ~55.2 kDa and a calculated isoelectric point (pl) of 9.08. The predicted amino acid sequence of PtoDWF4 contained three conserved domains, including the heme binding domain A, the steroid binding domain B and domain C (Nebert and Gonzalez 1987). Multiple sequence alignment revealed that PtoDWF4 shared high identity with PtdWf4 (98.57%) in P. trichocarpa (Torr. & Gray), AtDWF4 (74.08%) in Arabidopsis, and relative lower identity with OsDWF4 (65.82%) in rice and ZmDWF4 (63.13%) in maize (Figure 1A).

Previous studies have reported that DWF4 belongs to the cytochrome P450 superfamily (CYP90B1) (Choe et al. 1998, 2001). As shown in Figure 1B, phylogenetic analysis revealed that PtoDWF4 was grouped into Class I together with AtDWF4, ZmDWF4 and OsDWF4, which have been identified to participate in BR biosynthesis and promote the growth and development of plants (Choe et al. 1998, Hong et al. 2003, Liu et al. 2007).

Expression patterns of PtoDWF4 in poplar

We predicted the expression pattern of PtoDWF4 in an associated web resource (http://aspwood.popgenie.org) (Sundell et al. 2017). The result showed that PtoDWF4 was highly expressed in wood-forming zone (see Figure S1 available as Supplementary Data at Tree Physiology Online). To further determine the expression profiles of PtoDWF4, total RNA was extracted from different tissues of 5-month-old P. tomentosa. qRT-PCR analysis showed that PtoDWF4 was detected in all tissues tested, but highly expressed in stems, especially in xylem (Figure 2). By contrast, relatively low expression level was detected in roots.

Construction and identification of transgenic poplars

To investigate the function of PtoDWF4 in the regulation of the growth and development of poplar, we isolated the coding sequence of PtoDWF4 and fused it with the CaMV 35S promoter to generate a plant binary expression vector PtoDWF4-0E (Figure 3A). After transformation, putative transgenic plants were selected for confirming the integration of the transgene by PCR analysis using the primers of the hygromycin phosphotransferase gene (Hyg) (see Figure S2A available as Supplementary Data at Tree Physiology Online). Ten independent transgenic lines harboring PtoDWF4 were chosen for qRT-PCR analysis. Two transgenic lines (L2 and L4) with high transcript levels of PtoDWF4 were propagated and used for further studies (Figure 3B).

Meanwhile, we also generated the PtoDWF4 mutant lines using the CRISPR/Cas9-based genome editing system. Three 20-bp sequences followed by a trinucleotide (5'−NGG−3') protospacer adjacent motif (PAM) located in the first three exon of PtoDWF4 were assigned (Figure 3C). The PtoDWF4 knockout construct (PtoDWF4-KO) was introduced into P. tomentosa by Agrobacterium-mediated leaf disc method. More than 20 putative transgenic plants were generated and PCR analysis showed that the PtoDWF4 fragments containing three sgRNA-targeted sites were amplified from all transgenic lines (see Figure S2B available as Supplementary Data at Tree Physiology Online). PCR products from lines L2, L8, L15 and L17 were amplified and cloned into PMD19 vector. A total of 20 PCR clones for each mutant were randomly chosen for DNA sequencing. The results revealed that deletions (−), insertions (+) and substitutions of one or a few nucleotides were detected at the three sgRNA-targeted sites in two transgenic lines (L15 and L17). In line L15, small deletions...
were detected at the three target sites, and small insertions (1 bp) happened at target sites T1 and T3, suggesting the efficiency of mutagenesis. Similar results were obtained in line L17 (Figure 3D). These insertions and deletions detected in the PtoDWF4-KO lines resulted in translational frame-shift or premature termination of PtoDWF4 (see Figure S3 available as Supplementary Data at Tree Physiology Online), indicating the successful generation of PtoDWF4 loss-of-function mutants using CRISPR/Cas9-based genome editing approach. No mutations were found in other lines (L2 and L8) (data not shown). Considered that PtoDWF4 shared high identity (91.43%) with a close paralog (Potri.005G124000.1), we also detected whether the mutations occurred in the targets of Potri.005G124000.1 in transgenic lines L15 and L17. The sequencing results showed that no mutations were found in these target sites of Potri.005G124000.1 in transgenic lines (see Figure S4 available as Supplementary Data at Tree Physiology Online).

Overexpression of PtoDWF4 promotes growth and development of poplar

All transgenic and wild-type poplar plants were grown in the greenhouse under the same environmental conditions. Compared with the wild type, 5-month-old transgenic PtoDWF4-OE plants exhibited rapid growth and development. Inversely, transgenic PtoDWF4-KO lines delayed morphological changes, including retarded growth, reduced internode number and smaller leaf size, but no significant alteration in leaf shape (Figure 4A). Quantitative measure showed that the stem diameter and plant height were
significantly increased in PtoDWF4-OE plants but dramatically reduced in PtoDWF4-KO lines in comparison to the wild-type control (Figure 4B and C). Shoot dry weight increased 33–46% in transgenic PtoDWF4-OE lines and reduced 23–43% in PtoDWF4-KO lines compared to the wild type (Figure 4D). These phenotypical alterations coincide with previous studies, which showed that BRs-related genes could enhance cell elongation and promote plant growth (Mora-Garcia et al. 2004, He et al. 2007, Wang et al. 2013). Taken together, our results suggested that PtoDWF4 might play an important role in regulating poplar growth and development.

PtoDWF4 is involved in the positive regulation of wood formation in poplar

In order to determine the potential role of PtoDWF4 in wood formation, SCW development was analyzed in the sixth internode of 5-month-old wild-type and transgenic plants. Toluidine blue staining analysis showed that transgenic PtoDWF4-OE lines exhibited larger stem diameter compared to the wild-type control, while PtoDWF4-KO lines had a significantly smaller the size of stem diameter (Figure 5A–C). Further magnification of histochemical staining revealed that overexpression of PtoDWF4 improved secondary xylem development (Figure 5E), leading to expanded xylem area (Figure 5J) and increased number of xylem cell layers (28 layers) (Figure 5K), compared to wild-type plants (Figure 5D).

In contrast, knock-out of PtoDWF4 resulted in reduced xylem development (Figure 5F and I) and only 16 layers were observed in PtoDWF4-KO plants (Figure 5K). Similar results were also observed in the fifth and seventh internode between transgenic lines and wild-type plants (data not shown).

Additionally, the lignin deposition in the vascular tissues of transgenic PtoDWF4-OE plants and PtoDWF4-KO mutants were determined by Phlorogucinol/HCl staining. The lignin-specific histochemical staining showed that no obvious changes in lignin deposition were detected in the stem xylem of the PtoDWF4-OE and PtoDWF4-KO plants compared to the wild-type (see Figure S5A–C available as Supplementary Data at Tree Physiology Online). Scanning electron microscope (SEM) also revealed that there was no significant difference in the thickness of the vessel cell walls between transgenic PtoDWF4-OE and PtoDWF4-KO plants as well as the wild-type control (see Figure S5D–G available as Supplementary Data at Tree Physiology Online). These results suggested that PtoDWF4 mainly improved the xylem development during wood formation, but did not affect the cell wall thickness of stem xylem in poplar.

To further verify the effect of PtoDWF4 on xylem development, the content of the chemical components, including lignin, cellulose and xylan, was examined in transgenic lines. Glucan is the most important component of cellulose, which may reflect the content of cellulose. The results showed that lignin contents in PtoDWF4-OE
lines were significantly increased by 10.64–13.09% and decreased by 8.79–11.67% in PtoDWF4-KO lines, compared to wild-type plants (Table 1). Similar changes in the xylan and cellulose contents were obtained from these transgenic plants (Table 1). These results indicated that PtoDWF4 is a positive regulator for improving xylem development in poplar.

Overexpression of PtoDWF4 improves BR biosynthesis in transgenic poplar

Previous studies have shown that DWF4 was responsible for BR biosynthesis (Choe et al. 1998, 2001). The expression levels of the BRs-related genes in transgenic plants were determined. As shown in Figure 6, qRT-PCR analysis showed that no significant changes occurred in PtoBZR1 (homology with AtBZR1, which functions as a transcriptional repressor with dual roles in BR homeostasis and growth responses) (He et al. 2005), in transgenic and wild-type plants. Notably, the transcriptional levels of PtoCPD, PtoROT3, PtoCYP85A2 (homology with AtCPD, AtROT, AtCYP85a2, respectively) (Mathur et al. 1998, Shimada et al. 2003, Kim et al. 2005a, 2005b) were significantly up-regulated in PtoDWF4-OE lines, but down-regulated in PtoDWF4-KO lines in comparison to the wild type (Figure 6). Furthermore, we examined BR levels in transgenic and wild-type plants. Overexpression of PtoDWF4 resulted in a significant increase in BR concentrations in transgenic plants. By contrast, in PtoDWF4-KO lines (L15 and L17), BR levels were decreased to 89% and 80% of the levels in the wild type, respectively (Figure 7).

PtoDWF4 positively regulated the expression of SCW biosynthesis-related genes in poplar

Given that PtoDWF4 influenced xylem development in poplar, we examined the expression of SCW biosynthesis-related genes via qRT-PCR. As expected, the expression of lignin biosynthetic genes (PAL4, C4H2, F5H2, 4CL5, HCT1, C3H3, CCoaOMT1, CPR2, COMT2, CAD1), a cellulose biosynthetic gene (CesA2A) and a xylan biosynthetic gene (GT43D) (Joshi et al. 2004, Djerbi et al. 2005, Shi et al. 2010, Lee et al. 2011, Vanholme et al. 2013) were induced in transgenic PtoDWF4-OE lines but suppressed in PtoDWF4-KO lines (Figure 8A), consistent with the changes of chemical components in stem xylem of transgenic lines (Table 1). Additionally, the expression of SCW-associated transcription factors was also determined in transgenic PtoDWF4-OE and PtoDWF4-KO plants (Figure 8B). The results revealed that overexpression of PtoDWF4 induced the expression of 4 NAC (NAC154, NAC105, WND1B and WND2B), 2 MYB (MYB103 and MYB092) and WRKY12 transcription factor genes (Ye and Zhong 2015), whereas knock-out of PtoDWF4 resulted in a significant reduction in their expression in transgenic poplar.
plants. These results implied that PtoDWF4 might positively regulate xylem development by activating SCW biosynthetic genes in poplar.

As procambium and cambium are able to differentiate into xylem (Elo et al. 2009), we also detected the influence of PtoDWF4 on cambium maker genes. The results were consistent with our expectation. HB7, which promoted xylem cell differentiation (Zhu et al. 2013), was elevated in PtoDWF4-OE lines (Figure 8C). Meanwhile, the expression levels of cambium genes (C3H18 and Ant1) (Schrader et al. 2004, Chai et al. 2014) were

<table>
<thead>
<tr>
<th>Sample</th>
<th>WT</th>
<th>PtoDWF4-OE L2</th>
<th>PtoDWF4-OE L4</th>
<th>PtoDWF4-KO L2</th>
<th>PtoDWF4-KO L4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lignin</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acid-insoluble</td>
<td>20.17 ± 0.42</td>
<td>22.83 ± 0.52**</td>
<td>22.03 ± 0.58*</td>
<td>19.53 ± 0.37</td>
<td>18.33 ± 0.49*</td>
</tr>
<tr>
<td>Acid-soluble</td>
<td>3.13 ± 0.27</td>
<td>3.52 ± 0.23</td>
<td>3.25 ± 0.25</td>
<td>2.72 ± 0.13</td>
<td>2.25 ± 0.15*</td>
</tr>
<tr>
<td>Total</td>
<td>23.30 ± 0.69</td>
<td>26.35 ± 0.75*</td>
<td>25.78 ± 0.83*</td>
<td>21.25 ± 0.50</td>
<td>20.58 ± 0.64*</td>
</tr>
<tr>
<td>Polysaccharide</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Xylan</td>
<td>16.34 ± 0.48</td>
<td>18.28 ± 0.51*</td>
<td>17.52 ± 0.45</td>
<td>15.88 ± 0.31</td>
<td>14.52 ± 0.25*</td>
</tr>
<tr>
<td>Glucan</td>
<td>42.12 ± 0.75</td>
<td>45.34 ± 1.07*</td>
<td>44.86 ± 0.82*</td>
<td>41.86 ± 1.02</td>
<td>40.34 ± 0.83</td>
</tr>
</tbody>
</table>
significantly increased in PtoDWF4-OE with lower transcriptional levels in PtoDWF4-KO lines (Figure 8C). These results indicated that PtoDWF4 was involved in the regulation of cambium in wood development in poplar.

Discussion

Over the past decades, extensive studies have shown that phytohormones play essential roles in plant growth and development, organ formation. In woody species, it has been demonstrated that hormones such as auxin, cytokinin, GA and ethylene, have important roles in wood formation (Nugroho et al. 2012, Pramod et al. 2012). For instance, auxin plays an important role on embryonic development and procambium patterning (Scarpella et al. 2002, Jenik and Barton 2005), GAs are involved in the regulation of early stages of xylem differentiation during wood formation in aspen (Israëllson et al. 2003). Cytokinins participate in the regulation of cambial development in poplar (Nieminen et al. 2008). Ethylene is also an important natural phytohormone and interacts with other hormones in tension wood formation in poplar (Andersson-Gunneras et al. 2003). Recently, BRS were shown to take part in regulating wood formation. It is well demonstrated that BRS stimulated the tracheary element differentiation, and also had a feedback regulation to ensure homeostasis of cell wall biosynthesis (Yamamoto et al. 1997, Wolf et al. 2012). DIM1, a BR biosynthesis gene, participated in controlling cell wall structure and composition in Arabidopsis (Hossain et al. 2012). Although increasing evidence has established the connection between BR and cell wall formation in Arabidopsis, to date, little is known about the roles of BRs in secondary xylem formation of woody species.

Previous studies have demonstrated that DWF4 (also known as CYP90B1) encodes C-22 hydroxylase (Choe et al. 1998), which plays an important role in the hydroxylation of various C27-29 sterols (Choe et al. 2001, Fujita et al. 2006). Since the ratio of reagents to the direct products of DWF4 was the highest among all the enzymes involved in the BR biosynthesis flux, DWF4 is considered as one of the main enzymes in the BR biosynthesis (Choe et al. 2001, Shimada et al. 2003). In a previous study, PeDWF4, homolog of Arabidopsis DWF4 (AtDWF4), was isolated from P. euphratica which is a woody species with high tolerances to drought and salt stresses (Si et al. 2016). Overexpression of PeDWF4 in transgenic Arabidopsis plants resulted in an increase in BR synthesis.
in plant heights, number of siliqua, hypocotyl length and seed yields. In this study, another poplar DWF4 gene PtoDWF4 was cloned from *P. tomentosa*. Amino acid sequence analysis showed that PtoDWF4 contains one heme binding domain A, the steroid binding domain B and domain C (Nebert and Gonzalez 1987) (Figure 1A), suggesting that it was a conserved cytochrome P450 monooxygenase protein. Phylogenetic analysis showed that PtoDWF4 was grouped together with AtDWF4, ZmDWF4 and OsDWF4, but had the closest relationship with PeDWF4 (Figure 1B).

Transgenic plants overexpressing these DWF4 genes showed a significant increase in vegetative growth, inflorescence stem height and biomass yield, due to an elevation of the endogenous levels of BR biosynthesis (Choe et al. 1998, Hong et al. 2003, Liu et al. 2007, Si et al. 2016). We showed that overexpression of PtoDWF4 resulted in an increase in both plant height and stem diameter in poplar (Figure 4), whereas knockout of PtoDWF4 led to a reduction in biomass of transgenic plants (Figure 4D). These phenotypic alterations are consistent with previous reports in transgenic Arabidopsis overexpressing AtDWF4, which displayed increased inflorescence height and numbers of both seeds and branches. Similar severe dwarf phenotype was observed in the Arabidopsis *dwl*1 mutant (Takahashi et al. 1995, Choe et al. 2001, Liu et al. 2007). These phenotype similarities are probably due to the altered activity of the rate-limiting step enzyme, thus influencing BR biosynthesis in poplar. Our result revealed that PtoDWF4 had a conserved function in specific hydroxylation steps during BR biosynthesis in poplar.

Extensive evidence has shown that plant hormones play important roles in xylemogenesis and vascular development (Zhong and Ye 2014). In BR-biosynthetic mutants, for example, expression of cell wall synthetic genes was down-regulated. Exogenous BRs increased tracheary element differentiation in *Zinnia elegans* (Yamamoto et al. 1997). Moreover, BRs regulate vascular differentiation, promoting xylem formation (Fukuda 2004). A recent study showed that Arabidopsis *DIM1* is involved in BR biosynthesis and its mutant *dim1* displayed a dwarf phenotype with a reduction in lignin and cellulose composition (Hossain et al. 2012). In order to investigate the function of PtoDWF4 in woody plants, here we generated transgenic plants carrying PtoDWF4-OE and PtoDWF4-KO cassettes. Histochemical staining of toluidine blue showed that constitutive expression of PtoDWF4 improved secondary xylem development in transgenic PtoDWF4-OE plants (Figure 5), resulting in elevated number of xylem cell layers (Figure 5K), compared with the wild type (Figure 5D). Inversely, the PtoDWF4-KO mutants exhibited reduced xylem area (Figure 5F and I) and fewer xylem cell layers (Figure 5K).
Interestingly, Phlorogucinol/HCl staining and SEM analysis showed that no significant difference in the thickness of the vessel cell walls was found between transgenic PtoDWF4-OE and PtoDWF4-KO lines as well as the wild-type control (see Figure S5 available as Supplementary Data at Tree Physiology Online). Taken together, these data implied that PtoDWF4 is involved in the positively regulation of xylem development during wood formation, but did no change the thickness of SCW in poplar.

Lignin, cellulose and xylan constitute the main components of the SCW in plants and wood formation requires the coordinated regulation of their biosynthesis (Ye and Zhong 2015). qRT-PCR analysis revealed that overexpression of PtoDWF4 resulted in an elevation in the expression of SCW biosynthetic genes for lignin (PAL4, C4H2, F5H2, 4CL5, HCT1, C3H3, CCOAOMT1, CR2, COMT2 and CAD1), cellulose (Cesa28) and xylan (GT43D) (Figure 8A). In contrast, their expression levels were down-regulated in PtoDWF4-KO lines (Figure 8A). Meanwhile, PtoDWF4 activated the expression of NAC and MYB transcription factors, while knock-out of PtoDWF4 repressed their transcriptional levels (Figure 8B). Similar results were reported in a previous study, in which PcCYP85A3, a functional homolog of AtCYP85A2 worked as a bifunctional cytochrome P450 monooxygenase to catalyze a rate-limiting step in the BR-biosynthetic pathway (Kim et al. 2005o, 2005b), was isolated from P. trichocarpa (Jin et al. 2017). Overexpression of PcCYP85A3 improved xylem formation without affecting the composition of cellulose and lignin as well as the thickness of SCW in transgenic poplar (Jin et al. 2017).

In addition, as vascular cambium of trees played an important role on producing xylem and phloem cells, we also detected the transcriptional levels of genes involved in vascular cambium development. Overexpression of PtoDWF4 enhanced the expression of poplar HB7, C3H18 and Ant1 genes, while relative lower expression occurred in PtoDWF4-KO plants (Figure 8C). In conclusion, our study provides molecular evidence that PtoDWF4 is involved in the positive regulation of wood development, especially xylem development, in poplar. Although we found that PtoDWF4 influenced the expression of SCW- and vascular cambium-associated genes, the regulatory mechanism still needs to be further explored.

Supplementary Data
Supplementary Data for this article are available at Tree Physiology Online.

Funding
This work was supported by the National Key Research and Development Program to National Key R & D Program (2016YFD0600105), the National Natural Science Foundation of China (31370672, 31500216, 31500544 and 31370317), and Fundamental Research Funds for the Central Universities (XDJK2016B032).

References

S h i R , S u n Y , L i Q (2 0 1 0) T o w a r d s a s y s t e m s a p p r o a c h f o r l i g n i n

S i J , S u n Y , W a n g L U , Q i n Y , W a n g C , W a n g X (2 0 1 6) F u n c t i o n a l a n a-

