Immediate versus delayed positioning of dental implants in guided bone regeneration or onlay graft regenerated areas: a systematic review

M. Clementini, A. Morlupi, C. Agrestini, A. Barlattani

Department of Dentistry, University "Tor Vergata", Rome, Italy

Abstract. The aim of this study was to compare success rates in immediate and delayed dental implant placement following guided bone regeneration or onlay bone block ridge augmentation. A systematic review of all studies on this topic was performed. For inclusion, studies had to involve at least five patients, report specific success criteria, and have a minimum follow-up period of 6 months. Studies reporting only the survival rate of implants were excluded. From 287 studies identified, 79 were screened and 13 were included in the analysis. Six studies provided data on simultaneous (immediate) positioning of implants, five studies on delayed positioning, and two studies provided data on both of these approaches. Success rates for implants placed using a simultaneous approach ranged from 61.5% to 100%; success rates for implants placed using a staged approach ranged from 75% to 98%. Even though the current review revealed that there are not many studies reporting data relevant to the analyzed topic, the data obtained suggest that the delayed positioning of implants should be considered more predictable than the immediate positioning. Studies presenting a control group and adopting standardized success criteria are required, and data from this review must be considered indicative.

The dental rehabilitation of partially or totally edentulous patients with osseointegrated oral implants is nowadays one of the most successful methods to restore oral aesthetics and function, with predictable results. However, a minimum amount of bone width and height is an essential prerequisite for the correct placement of oral implants. Thus, unfavourable local conditions due to atrophy, trauma, and periodontal disease, may result in insufficient bone volume or an unfavourable inter-arch relationship, which will not allow the correct and prosthodontically guided positioning of dental implants.
For such cases, many different techniques have been developed to reconstruct the deficient alveolar jaws for the placement of dental implants. 10-13

Further, the ideal timing of implant placement after dental extraction has been extensively discussed in the literature, and advantages and disadvantages have been attributed to the different protocols: 14,15: (1) immediate or type 1, when the implant is placed during the same surgical intervention as the dental extraction; (2) early implant placement or type 2, when implants are placed during the early stages of healing (from 4 to 8 weeks); and (3) delayed implant placement or type 3, when implants are placed when the ridge has healed (from 3 to 6 months). The timing of implant placement after reconstruction of atrophic alveolar ridges instead, also remains a controversial topic.

In fact implants can be positioned in conjunction with grafting procedures (one-stage surgery or immediate implant placement) or after a consolidation period (two-stage surgery or delayed implant placement). Although it is difficult to determine a clear indication for immediate or delayed implant placement, the majority of authors suggest immediate implant placement when the residual alveolar bone presents adequate quality and quantity. 10 In fact, the primary stability of dental implants, which is considered to be the essential condition for osseointegration, is closely related to these parameters.

Through the years, many studies proposing the two different approaches have appeared in the scientific literature. According to the authors who support immediate implant placement, 16-25 the reason is that the resorption of grafted bone over time is not a linear process but most pronounced soon after its transplantation. 26 Those who advocate delayed placement 27-39 instead, affirm that immediate placement of implants exposes the patient to some risks, such as partial or total loss of the graft in the case of wound dehiscence, membrane or onlay graft exposure and/or infection, and non-integration of implants related to the immediate placement into avascular bone. In fact, when a delayed protocol is performed, it would be possible to place implants in a revascularized graft. Since the regenerative capacity of bone is determined by the presence of vessels, bone marrow, and vital bone surfaces, a delayed approach would permit a better integration of implants (higher values of bone-implant contact) and stability of implants as compared with immediate implant placement. 11,40,41

The aim of this study was to compare, in a systematic manner, publications reporting the success rate of dental implants placed simultaneously or as a second surgery following ridge augmentation by means of guided bone regeneration (GBR) or onlay graft regeneration technique. 31,40,41

Materials and methods

Inclusion and exclusion criteria were defined by the authors, before beginning the study, according to the protocol outlined below.

For inclusion, publications had to be based on human subjects and written in English, and had to analyze the success rate of endosseous implants placed in augmented jaws by means of GBR or onlay graft technique, specifying the type of implant surgery (simultaneous or staged) with the respective results. Every study design (prospective and retrospective) was accepted, but studies had to involve more than five healthy patients and report on implant success with at least 6 months of loading, in order to observe biological complications during function rather than early implant failures.

Publications that reported the same data as reported in later publications by the same authors were not considered. Studies describing only the results of bone augmentation, only the survival rate of implants, and those without any specified success criteria, were excluded. Studies on major maxillofacial reconstruction following tissue resection in the case of tumours and bone defects related to congenital malformations (such as cleft lip and palate or major craniofacial malformations), as well as socket preservation techniques or the treatment of peri-implantitis were not included.

The following augmentation procedures were considered: (1) GBR, according to the biological principle of a protected space, created with a resorbable or non-resorbable barrier membrane over the area to be augmented, in order to stabilize the blood clot and to exclude soft tissue penetration; 42,43 (2) bone block grafts, according to an onlay graft technique, used alone or associated with particulate bone, and covered or not by a resorbable membrane. 10

Even if studies did not adopt the same criteria, implant success was the main outcome, and it had to be well-specified in the publications for inclusion. However, when possible, the following clinical and radiographic criteria were utilized to define implant success based on a combination of the success criteria previously defined by Albrektsson et al. and adapted by Buser et al.: absence of mobility, absence of persistent subjective complaints (pain, foreign body sensation and/or dysesthesia), absence of recurrent peri-implant infection with suppuration, absence of a continuous radiolucency around the implant; 44 and absence of a pocket probing depth (PPD) >5 mm. 45 Even if during the first year of function 1.5 mm of vertical bone resorption was accepted, after that time, the annual vertical bone loss should not exceed 0.2 mm (mesially or distally). 2,46

A three-stage (Fig. 1) screening process was performed independently by two reviewers (MC and AM).

At first, all the titles were screened to eliminate irrelevant publications, review articles, and animal studies; then, all abstracts of publications selected during the first screening were analyzed, and studies were excluded on the basis of the number of patients, the intervention, and the outcome characteristics. In the last stage, through an analysis of the whole selected full texts, study eligibility was based on the predetermined inclusion and exclusion criteria. Any disagreements between the two reviewers were resolved after additional discussion with a third reviewer (CA). The inter-reviewer
reliability of the data extraction was calculated by determining the percentage of agreement and the correlation coefficients with a kappa analysis.

A table was created to organize the data from all the included studies (Table 1) and the results were discussed.

Results

The preliminary investigation resulted in 3510 titles. Following the first stage of screening (titles), 287 potentially relevant studies were identified, and then, after second-stage screening (abstracts), 79 full-text publications were obtained and analyzed. Finally, 13 articles were found to fulfil the inclusion criteria. Agreement in study selection between reviewers was 89.53% (kappa value = 0.46).

Because of the absence of appropriate randomized controlled trials (RCTs) and controlled clinical trials (CCTs), this systematic review included only prospective and retrospective cohort studies. As such, and due also to the significant heterogeneity between studies, a meta-analysis was not performed and the synthesis of data is described in a narrative manner.

Ridge augmentation

Chiapasco et al.\(^{48}\) reported the values of vertical augmentation following the positioning of bone blocks harvested from calvaria in the area of the anterior mandible (residual bone height <5 mm). The mean bone augmentation obtained after the reconstruction procedure was 8–11 mm, with a mean resorption lower than 10% at the time of implant positioning (6 months after the bone grafting surgery).

Another study by the Chiapasco et al.\(^{49}\) provides data on the reconstruction of atrophic mandibles by means of bone blocks harvested from the mandible ramus. The mean bone gain after the procedure was 4.6 mm and the mean bone resorption before the implant positioning (4–5 months after the augmentation procedure) was 0.6 mm. After a post-loading follow-up of 1 year, the mean bone resorption was 0.3 mm, and after 2 and 4 years it was 0.9 and 1.1 mm, respectively.

In the study by Llambés et al.\(^{50}\), a mean vertical ridge augmentation of 3 mm in the area of posterior mandible was obtained by means of bioabsorbable membranes and a mixture of autologous and bovine bone. A complete regeneration was achieved in 24 of 32 implants, but three implants failed to show any new bone formation.

Juodzbalys et al.\(^{43}\) also performed a vertical ridge augmentation by means of bioabsorbable membranes and bovine bone, simultaneously with the implant placement. In this case, the mean vertical defect ranged from 3.8 to 10 mm. At the time of prosthesis placement, good peri-implant defect filling (the mean distance from the implant shoulder to the alveolar bone level (DIB) = 1.69 mm) was shown, except in one case (DIB = 3.6 mm).

Van der Meij et al.\(^{51}\) provide data on the positioning of bone blocks harvested from the iliac crest. The grafts were positioned in the atrophic anterior mandibles of 17 patients, and the mean bone gain was 8.5 mm (mean augmentation of 95%). The implants (two for each patient) were positioned simultaneously with the grafts, and the mean bone resorption after a mean post-loading follow-up period of 4 years was 15%.

In another study by Chiapasco et al.\(^{51}\), data on vertical GBR by means of non-resorbable expanded polytetrafluoroethylene (ePTFE) membranes and autologous bone chips, both in the maxilla and mandible, are reported. The implants were placed simultaneously or in a second stage surgery after the GBR technique. The mean bone resorption after a 3-year post-loading follow-up was 2.06 mm for the simultaneous approach; for the staged approach, values of mean bone resorption were 1.35 mm before the implant placement and 1.69 mm after 3 years of function.

Nyström et al.\(^{52}\) reported data on the augmentation of atrophic maxillary ridges by means of bone blocks harvested from the iliac crest in 30 consecutively treated patients. The implants (a total of 177) were inserted simultaneously with the grafts and patients were followed for an observation period of 10 years. The resorption results were higher in the first 3 years after function and became stable in the following years, without other significant losses.

Buser et al.\(^{53}\) reported data on bone gain in the case of horizontal GBR by means of autologous bone and non-resorbable membranes. The mean bone gain was 3.5 mm at the time of implant placement (6–9 months after ridge augmentation), and a success rate (absence of mobility, absence of peri-implant radiolucency, absence of persistent subjective complaints, and absence of suppuration) of 98.3% was reported after a post-loading follow-up of 5 years.

In the study of Brunel et al.\(^{54}\), the bone gain obtained in 14 patients by means of GBR with resorbable collagen membranes and hydroxyapatite is reported. After a healing period of 8 months, 14 implants were placed, with a bone loss (7 years post-loading follow-up) of <2 mm in 13 of the 14 treated areas.

Chiapasco et al.,\(^{33}\) in their study, reported data on the regeneration of horizontal defects in both mandibles and maxillae. The GBR was obtained by means of non-resorbable ePTFE membranes and autologous bone chips harvested from intraoral donor sites. For mean residual bone values of 3.2 mm, a mean bone gain of 2.7 mm at the time of implant placement was reported.

Lorenzoni et al.\(^{55}\) reported data on GBR obtained by means of ePTFE membranes in association with grafting materials, for the immediate placement of 85 implants (39 in the maxilla and 46 in the mandible). The mean recorded bone loss at 24 months after implant positioning was 1.51 mm.

Triplett and Schow,\(^{30}\), in their study, analyzed not only the success rate of dental implants placed in grafted areas, but also the success of the augmentation procedure. Thirty-two grafts were positioned (29 harvested from the iliac crest and three from calvaria) in patients with
<table>
<thead>
<tr>
<th>Ref.</th>
<th>Study design</th>
<th>Year</th>
<th>City</th>
<th>Type of augmentation</th>
<th>Number of patients (smokers)</th>
<th>Mean age, years</th>
<th>Implants (number/type/surface)</th>
<th>Area of implants</th>
<th>Post-loading follow-up</th>
<th>Restorative design</th>
<th>Approach</th>
<th>Success rate of implants</th>
<th>Survival rate of implants</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chiapasco</td>
<td>CS</td>
<td>2007</td>
<td>Milan (Italy)</td>
<td>Onlay from calvaria</td>
<td>6 (>15 cigarettes/day excluded)</td>
<td>56</td>
<td>23/ITI (Nobel Biocare)/surface not reported</td>
<td>Mandible</td>
<td>1–3 years</td>
<td>Overdentures</td>
<td>Delayed</td>
<td>95.7%</td>
<td>100%</td>
</tr>
<tr>
<td>Chiapasco</td>
<td>RPS</td>
<td>2007</td>
<td>Milan (Italy)</td>
<td>Onlay from mandibular ramus</td>
<td>8 (>15 cigarettes/day excluded)</td>
<td>41</td>
<td>19/straumann/surface not reported</td>
<td>Mandible</td>
<td>24–48 months</td>
<td>single crowns</td>
<td>Delayed</td>
<td>89.5%</td>
<td>100%</td>
</tr>
<tr>
<td>Llambe's</td>
<td>CS</td>
<td>2007</td>
<td>Valencia (Spain)</td>
<td>Vertical GBR</td>
<td>11 (all but one <10 cigarettes/day)</td>
<td>48</td>
<td>32/osseotite (biomet 3i)/surface not reported</td>
<td>Mandible</td>
<td>1 year</td>
<td>NR</td>
<td>immediate</td>
<td>93.75%</td>
<td>93.75%</td>
</tr>
<tr>
<td>Juodzbalys</td>
<td>CS</td>
<td>2007</td>
<td>Kaunas (Lithuania)</td>
<td>Vertical GBR</td>
<td>17 (>10 cigarettes/day excluded)</td>
<td>39.6</td>
<td>NR</td>
<td>NR</td>
<td>5 years</td>
<td>single crowns</td>
<td>immediate</td>
<td>90%</td>
<td>100%</td>
</tr>
<tr>
<td>Van der Meij</td>
<td>CS</td>
<td>2005</td>
<td>Alkmaar (Netherlands)</td>
<td>Onlay from iliac crest</td>
<td>17 (no data about smoking)</td>
<td>56</td>
<td>34/frailit/surface not reported</td>
<td>Mandible</td>
<td>From 6 months to 7 years</td>
<td>Overdentures</td>
<td>immediate</td>
<td>88.2%</td>
<td>–</td>
</tr>
<tr>
<td>Chiapasco</td>
<td>RPS</td>
<td>2004</td>
<td>Milan (Italy)</td>
<td>Vertical GBR</td>
<td>11 (>15 cigarettes/day excluded)</td>
<td>NR</td>
<td>25/braemarik/surface not reported</td>
<td>10 maxilla 15 mandible</td>
<td>From 29 to 41 months</td>
<td>NR</td>
<td>13 immediate 12 delayed</td>
<td>61.5% delayed 75% delayed</td>
<td>100%</td>
</tr>
<tr>
<td>Nystroem</td>
<td>CS</td>
<td>2004</td>
<td>Umea (Sweden)</td>
<td>Onlay from iliac crest</td>
<td>30 (no data about smoking)</td>
<td>53</td>
<td>177/nr/surface not reported</td>
<td>maxilla</td>
<td>10 years</td>
<td>full arch screw bridges</td>
<td>immediate</td>
<td>–</td>
<td>98.3% delayed 100%</td>
</tr>
<tr>
<td>Buser</td>
<td>PCS</td>
<td>2002</td>
<td>Bern (Switzerland)</td>
<td>Horizontal GBR</td>
<td>40 (no data about smoking)</td>
<td>NR</td>
<td>61/ITI/surface not reported</td>
<td>NR</td>
<td>5 years</td>
<td>single crowns or fixed partial dentures</td>
<td>delayed</td>
<td>86%</td>
<td>100%</td>
</tr>
<tr>
<td>Brunel</td>
<td>CS</td>
<td>2001</td>
<td>Toulouse (France)</td>
<td>GBR</td>
<td>14 (no smokers)</td>
<td>48</td>
<td>14/nr/surface not reported</td>
<td>13 maxilla 1 mandible</td>
<td>From 18 to 36 months</td>
<td>NR</td>
<td>delayed</td>
<td>93.3%</td>
<td>100%</td>
</tr>
<tr>
<td>Chiapasco</td>
<td>CS</td>
<td>1999</td>
<td>Milan (Italy)</td>
<td>GBR and onlay from intra-oral sites, calvaria, iliac crest</td>
<td>15 (heavy smokers excluded)</td>
<td>NR</td>
<td>30/18 ITI; 12 braemarik/surface not reported</td>
<td>85/frailit/surface not reported</td>
<td>21 maxilla 9 mandible</td>
<td>NR</td>
<td>delayed</td>
<td>94.6%</td>
<td>100%</td>
</tr>
<tr>
<td>Lorenzoni</td>
<td>CS</td>
<td>1999</td>
<td>Graz (Austria)</td>
<td>GBR</td>
<td>82 (no data about smoking)</td>
<td>21–61</td>
<td>85/frailit/surface not reported</td>
<td>39 maxilla 46 mandible</td>
<td>24 months</td>
<td>NR</td>
<td>immediate</td>
<td>100%</td>
<td>100%</td>
</tr>
<tr>
<td>Triplett</td>
<td>RS</td>
<td>1996</td>
<td>Dallas (Texas)</td>
<td>Onlay from ilium and cranium</td>
<td>NR (no data about smoking)</td>
<td>NR</td>
<td>175/nr/surface not reported</td>
<td>maxilla and mandible</td>
<td>From 12 months</td>
<td>NR</td>
<td>65 immediate 110 delayed</td>
<td>84.6% delayed 88.2% delayed 83%</td>
<td>–</td>
</tr>
<tr>
<td>Isaksson</td>
<td>CS</td>
<td>1992</td>
<td>NR</td>
<td>Onlay from iliac crest</td>
<td>8 (all heavy smokers apart from one patient)</td>
<td>NR</td>
<td>46/braemarik/surface not reported</td>
<td>maxilla</td>
<td>32–64 months</td>
<td>implant supported partial dentures</td>
<td>Immediate</td>
<td>–</td>
<td>–</td>
</tr>
</tbody>
</table>

CS, case series; GBR, guided bone regeneration; NR, not reported; PCS, prospective controlled study; RPS, randomized prospective study; RS, retrospective study.
Immediate implant placement—success and survival rate

Six studies19,27,28,43,50,54 provided data on simultaneous (immediate) positioning of implants, and two studies30,51 provided data on both of the approaches (immediate and delayed).

Llambés et al.50, who reported a success rate of 93.75%, described the immediate positioning of all 32 implants inserted during the study together with vertical GBR. All the implants were situated in the area of the posterior mandible, with a mean required vertical augmentation of 3.5 mm.

Juodzbalys et al.43, referring to the positioning of 17 implants, reported a success rate of 90% after 5 years of post-loading follow-up, according to the Albrektsson criteria; the survival rate was 100%. All 17 implants were placed simultaneously with the guided bone augmentation procedure.

Van der Meij et al.28 reported data on the immediate positioning of 34 implants (two for each patient) in the area of the anterior mandible simultaneously with vertical bone augmentation by means of bone blocks harvested from the iliac crest. The success rate (PPD <5 mm and absence of peri-implant radiolucency) after a mean post-loading follow-up of 4 years was 88.2%.

In the study by Chiapasco et al.51, the success rate (according to the Albrektsson criteria) of the 13 implants placed with an immediate approach in association with ePTFE membranes and autologous bone chips, was 61.5% after 3 years of function, with the majority of failures associated with the exposure of the membrane during the healing period.

In the study by Nyström et al.27, 177 implants were placed simultaneously with the augmentation procedure by means of bone blocks harvested from the iliac crest. A success rate (absence of mobility and absence of peri-implant radiolucency) of 72.8% was reported after a follow-up period of 10 years. Some failures occurred: in only three patients during the first 3 years after implant positioning, related to soft tissues traumas in the grafting area, with subsequent dehiscence during the healing period.

Lorenzoni et al.54 reported data on the positioning of 85 implants placed simultaneously with the GBR procedure, after a post-loading follow-up of 24 months. The recorded success rate (absence of mobility, absence of peri-implant radiolucency, absence of persistent subjective complaints, and absence of suppuration) was 100%.

Triplett and Schow40 reported a success rate (absence of mobility, absence of peri-implant radiolucency, absence of persistent subjective complaints, and absence of suppuration) of 84.6%, referring to 65 implants inserted simultaneously with the augmentation procedure.

In the study by Isaksson et al.19,46 implants were inserted in the atrophic maxillas simultaneously with the positioning of bone blocks harvested from the iliac crest. A success rate (absence of mobility, absence of peri-implant radiolucency, and absence of suppuration) of 83% was reported, with the majority of failures occurring in the period between the positioning of the fixtures and the positioning of the abutments.

Delayed implant placement—success and survival rate

Five studies38,49,51–53 provided data on delayed positioning of implants, and two studies60,53 provided data on both of the approaches (delayed and immediate).

Chiapasco et al.48 reported a success rate (according to the Albrektsson criteria) of 95.7% and a survival rate of 100% (post-loading follow-up of 12–24 months), referring to the positioning of 23 implants inserted in a second stage surgery after bone reconstruction.

In another study by Chiapasco et al.49, data are reported on the delayed positioning (4–5 months after the vertical regeneration procedure) of 19 implants in the mandible. The success rate (according to the Albrektsson criteria) after 24–48 months of function was 89.5%, with a survival rate of 100%.

Triplett and Schow40 reported a success rate (absence of mobility, absence of peri-implant radiolucency, absence of persistent subjective complaints, and absence of suppuration) of 88.2%, referring to 110 implants placed in a second stage surgery after the ridge augmentation procedure (after a healing period of 6–9 months).

In the study by Chiapasco et al.51, the success rate of 12 implants placed with a delayed approach following vertical GBR procedure by means of non-resorbable ePTFE membranes and autologous bone chips was 75%.

Buser et al.52 reported a success rate (absence of mobility, absence of peri-implant radiolucency, absence of persistent subjective complaints, and absence of suppuration) of 98.3% after 5 years of function, with a survival rate of 100%, referring to 61 implants positioned in horizontal guided bone regenerated areas.

A success rate (absence of mobility, absence of peri-implant radiolucency, absence of persistent subjective complaints, and absence of suppuration) of 86% after 7 years of function, with a survival rate of 100%, was reported by Brunel et al.53 referring to 14 implants placed in GBR areas.

In the study by Chiapasco et al.33 a success rate (according to the Albrektsson criteria) of 93.3% (survival rate of 100%) after a period of function ranging from 18 to 36 months was reported, referring to 30 implants placed in a second stage surgery following the augmentation by means of horizontal GBR technique.

According to the reported data, the success rate of implants placed using a simultaneous approach ranged from 61.5% to 100% (Llambés50; 93.75%; Juodzbalys43; 90%; Van der Meij28; 88.2%; Chiapasco31; 61.5%; Nyström27; 72.8%; Lorenzoni54; 100%; Tripplett40; 84.6%; Isaksson50; 83%), with all the studies but two reporting a success rate higher than 83%.

Success rate of implants placed using a staged approach ranged from 75% to 98.3% (Chiapasco30; 95.7%; Chiapasco49; 89.5%; Chiapasco31; 75%; Buser52; 98.3%; Brunel53; 86%; Chiapasco33; 93.3%; Trippett30; 88.2%), with all the studies but two reporting a success rate higher than 88.2%.

Smoking status

Only one study53 did not include smokers. Two studies41,50 included light smokers (<10 cigarettes/day) and four studies33,48,49,51 included moderate smokers (<15 cigarettes/day), while only one study13 included heavy smokers. Five studies27,28,30,52,54 did not report on smoking status.

Discussion

The aim of this study was to compare the success rates of dental implants placed simultaneously or as a second surgery following ridge augmentation by means of GBR or onlay graft technique. Because of the absence of appropriate RCTs, this systematic review included only 13 prospective and retrospective cohort studies fulfilling the inclusion criteria, and so no meta-analysis could be performed.

Data reported in the literature seem to demonstrate that GBR and onlay grafts...
procedures are reliable techniques, providing sufficient bone volume to allow implant placement in the case of vertical and/or horizontal defects of partially or totally edentulous patients. Most studies demonstrated that success rates of implants placed in the augmented areas by means of GBR or onlay graft technique are similar to those reported for implants placed in pristine bone.55–59

The timing of implant placement after reconstruction of alveolar ridges by means of GBR or onlay graft technique remains a controversial topic. Implants can be positioned in conjunction with grafting procedures or after consolidation of the graft has occurred. Although it is difficult to determine a clear indication for immediate or delayed implant placement, the majority of authors suggest immediate implant placement when the residual alveolar bone presents adequate quality and quantity.60 In fact, the primary stability of dental implants, which is considered to be the essential condition for osseointegration, is closely related to these parameters. However, in this review, no article recorded the attainment of a required level of primary stability as the outcome to follow for selecting an immediate or delayed implant placement.

Through the years, many studies have proposed the two different approaches. The present review suggests that in GBR and onlay grafted areas, delayed positioning of implants should be considered more predictable than immediate positioning.

The success rates of implants placed using a simultaneous approach ranged from 61.5% to 100%, with all the studies but two reporting a success rate higher than 83%. The success rates of implants placed using a staged approach ranged from 75% to 98.3%, with all the studies but two reporting a success rate higher than 88.2%.

To focus on the question of the present systematic review, it is important to define the difference between the concept of survival and that of the success rate. Sometimes implants that could be considered as ‘survived’ do not satisfy the essential criteria that define the success rate. The survival rate of an implant is defined as its presence in the bone into the mouth. Van Steenberghé et al.24 defined the survival rate as “the proportion of implants still in place in a specific time, even if they do not have any function”, i.e., implants that are not functioning and implants with a significant bone loss or with signs of radiolucency and/or inflammation are ‘survived’ implants. This may represent a limitation in evaluating the reliability of the onlay graft regeneration technique, because a high implant survival rate may not correspond to the success of the technique itself, considering that an implant can remain stable and osseointegrated even if the total amount of regenerated tissue after the surgical procedure has been resorbed. This is important, for example, in cases of vertical or horizontal regeneration, because while in the first clinical situation the supporting bone all around the implant is recreated, in the latter, regeneration of only the facial aspect is required, mostly for aesthetic demand.

For these reasons, only studies reporting well-defined implant success criteria were included in this review.

Finally, it should be important to address the restorative design. In fact, even when this is not the case, bone loss during the years appears also to be related to the type of prosthetic rehabilitation (single crown, fixed partial dentures, or overdentures).

In conclusion, the present systematic review found, on average, poor methodological quality of a limited number of articles focusing on the topic. None was an RCT, which is considered to be the most appropriate type of study to test the effectiveness of interventions, because this type is less prone to the effect of bias. Within the limits of these findings the following conclusions can be drawn: from a clinical point of view, delayed positioning of implants in GBR or onlay grafted areas should be considered more predictable than immediate positioning. In the future, in order to obtain rigorous evidence-based results, studies presenting a control group and adopting standardized criteria to define success and failure of implants placed either simultaneously or as a second surgery following ridge augmentation are required. Hence data from this review must be considered indicative.

Funding
None.

Competing interests
None.

Ethical approval
Not required.

References

Address:
Marco Clementini
Policlinico Tor Vergata
Viale Oxford 81
00133 Rome
Italy
Tel: +39 338 8378866
E-mail: mclementini@me.com
学霸图书馆

www.xuebalib.com

本文献由“学霸图书馆-文献云下载”收集自网络，仅供学习交流使用。

学霸图书馆（www.xuebalib.com）是一个“整合众多图书馆数据库资源，提供一站式文献检索和下载服务”的24小时在线不限IP图书馆。

图书馆致力于便利、促进学习与科研，提供最强文献下载服务。

图书馆导航：

图书馆首页 文献云下载 图书馆入口 外文数据库大全 疑难文献辅助工具