Trait Aggressiveness and Aggressive Behavior in the Context of Provocation and Inhibition

Andrew M. Sherrill, Joseph P. Magliano, Alan Rosenbaum, Kathryn M. Bell & Patricia S. Wallace

To cite this article: Andrew M. Sherrill, Joseph P. Magliano, Alan Rosenbaum, Kathryn M. Bell & Patricia S. Wallace (2016): Trait Aggressiveness and Aggressive Behavior in the Context of Provocation and Inhibition, Journal of Aggression, Maltreatment & Trauma, DOI: 10.1080/10926771.2015.1121192

To link to this article: http://dx.doi.org/10.1080/10926771.2015.1121192

Published online: 13 Apr 2016.

Submit your article to this journal

Article views: 43

View related articles

View Crossmark data
Aggressive behavior often occurs despite salient cues within the immediate environment that indicate aversive consequences will likely follow. Prior research has shown high trait aggressiveness to be related to sensitivity to situational provocation; however, little research has examined whether it is also related to insensitivity to situational inhibitors. This study examines the relationship between trait aggressiveness and aggressive behavior in a provocative context with, and without, an unambiguous inhibitory stimulus. Prior to experiencing provocation and being afforded the opportunity to retaliate, participants who varied in trait aggressiveness were explicitly given (or not given) an instruction that aggressive behavior might lead to aversive consequences and, thus, one should not behave aggressively. Findings revealed that without the instruction, those higher in trait aggressiveness exhibited steeper increases in aggressive responding as provocation increased. In the group that received the instruction, trait aggressiveness was unrelated to aggressive responding at all levels of provocation.

Research on trait aggressiveness, defined as the predisposition to hold hostile cognitions, express anger, and engage in physical and verbal aggression (Buss & Perry, 1992), suggests that high trait aggressive individuals will perceive ambiguous gestures as provocation, perhaps due to a hostile cognitive bias (e.g., Dill, Anderson, Anderson, & Deuser, 1997; Tremblay & Belchevski, 2004). Further, experimental research has established that high trait aggressive individuals are likely to respond to provocation with aggressive behavior (Bettencourt, Talley, Benjamin, & Valentine, 2006). Thus, we can expect high trait aggressive individuals to be prone to detect provocation and subsequently retaliate. However, many conflict situations contain inhibitory stimuli that could influence one’s behavior (e.g., verbal warnings that punishment will follow aggression). Are highly trait aggressive individuals...
predisposed to ignore inhibitory stimuli and respond aggressively to perceived provocation? Or, can situational factors evoke inhibitory processes within the highly trait aggressive person, thus attenuating the predisposition to retaliate? To answer this question, this study was designed to examine whether the aggressive behavior of individuals high in trait aggressiveness is less affected by contextual, inhibitory stimuli than that of individuals low in trait aggressiveness.

Like other forms of social behavior, changes in antecedents and consequences in the environment can shape aggression. One arrangement of contingencies often associated with aggressive behavior is provocation, especially interpersonal provocation (Anderson & Bushman, 2002). Huesmann (1988, 1998) suggested that the evaluation of a stimulus as provocative produces negative affect, which in turn increases the likelihood of aggressive behavior. Consistent with this premise, the tendency to make hostile inferences, especially when angered, has been shown to be a characteristic of individuals high in trait aggressiveness (Tiedens, 2001).

To better understand how trait aggressiveness manifests in the real world, research is needed on trait aggressiveness in contexts that not only provide provocative stimuli, but also inhibitory ones. Aggression researchers have long argued that situational pressures are often strong enough to override the influence of personality variables such as aggressiveness (e.g., Larsen, Coleman, Forbes, & Johnson, 1972). However, far more is known about situational cues that incite aggression (e.g., presence of weapons, alcohol, and media violence) than cues that inhibit aggression (Engelhardt & Bartholow, 2013). Despite real-world aggression often occurring in complex situations with simultaneous pressures to attack and withdraw, experimental research examining the link between trait aggressiveness and aggressive behavior has almost exclusively investigated provocative stimuli while paying little attention to the potential impact of inhibitory stimuli. In this study, it is proposed that a direct way of inducing situational inhibition is to instruct the participant that aggressive behavior will likely lead to aversive consequences and, thus, the participant should behave nonaggressively.

Behavioral research has demonstrated that human behavior is often influenced by verbal antecedent stimuli in the form of descriptions of consequences that follow behaviors within certain contexts (Hayes, Zettle, & Rosenfarb, 1989; Reese, 1989; Zettle, 1990). Acting in accordance with contingency-specifying statements can suppress the individual’s sensitivity to changes in otherwise influential proximal contingences (Catania, Shimoff, & Matthews, 1989). For example, a gambler will continue to place bets despite repeated losses (proximal contingencies) due to the believed fallacy that a string of bad luck will be balanced with a string of good luck (contingency-specifying statement). Similarly, real-world provocation often occurs within situations in which an individual experiencing an urge to
aggress is instructed that aggression will result in aversive consequences. These inhibitory stimuli in the form of contingency descriptions are delivered by a variety of sources including friends, authority figures, governments, and even the potential recipient of aggressive attacks. For example, a threatened person might state, “If you touch me, I will call the cops.” Other aggression inhibiting stimuli could take the form of precepts or religious doctrine such as biblical injunctions against violence (e.g., “turn the other cheek”). All of these serve as forms of verbal antecedents that can affect one’s sensitivity to proximal contingencies.

A number of experimental studies have demonstrated that inhibitory stimuli in the form of contingency-specifying statements can suppress alcohol-induced aggressive responding in laboratory contexts (Hoaken, Assaad, & Pihl, 1998; Jeavons & Taylor, 1985; also see Bailey, Leonard, Cranston, & Taylor, 1983). Given that alcohol consumption has been shown to be a robust predictor of aggressive behavior (Bushman & Cooper, 1990), these inhibitory effects are not trivial. These studies used the Taylor Aggression Paradigm (TAP; Taylor, 1967), a behavior analog measure of aggression in which participants administer and receive noxious stimuli (electric shocks or noise blasts) within a ruse competitive reaction time game. Jeavons and Taylor (1985) found that informing participants that TAP opponents tend to deliver low shock levels weakened alcohol-induced aggressive responding. Using an iteration of this design, Hoaken et al. (1998) found that instructing participants that they would be rewarded monetarily for delivering low shock levels weakened alcohol-induced aggressive responding. Together, these findings indicate that activating knowledge of aggression-deterring contingencies can serve to reduce aggressive responding. This evidence that inhibitory stimuli could function as protective factors against aggression merits further research within a broader network of factors (e.g., trait aggressiveness) that contribute to aggression.

This study

Although high trait aggressiveness seems to include increased sensitivity to provocative stimuli (Bettencourt et al., 2006), less is known regarding whether this characteristic entails decreased sensitivity to stimuli that normally (or, at least theoretically) inhibit aggressive behavior. The purpose of this study was to examine the possibility that inhibitory stimuli might disrupt the link between the predisposition to aggress and the actual manifestation of aggressive behavior. It was hypothesized that the influence of trait aggressiveness on increasing aggressive responses to provocation depends on the presence of an inhibitory stimulus, which will attenuate the influence of trait aggressiveness. This hypothesis predicts a three-way interaction of trait aggressiveness, provocative stimuli, and inhibitory stimuli. Specifically, in
the absence of an inhibitory stimulus, it was predicted that trait aggressiveness would be positively related to increases in aggressive responding as provocation increases. Conversely, in the presence of an inhibitory stimulus, it was predicted that trait aggressiveness and aggressive responding would not be related.

Method

Participants

Participants were undergraduate male students aged 18 or older from a large Midwestern university. Women were not recruited to obviate the confound of well-established sex differences in the aggression literature (Eagly & Steffen, 1986). To maintain the deception required by the TAP, participants were informed that they were recruited for a study investigating cognitive abilities related to athleticism. A total of 367 male students completed the short form of the Buss–Perry Aggression Questionnaire (BPAQ–SF; Bryant & Smith, 2001) as part of a mass testing session for students in introductory psychology (Phase 1). All Phase 1 participants were invited to the laboratory portion of the study that included the TAP and experimental manipulation (Phase 2). In total, 140 participants accepted the invitation and completed Phase 2. Data from 6 participants were excluded from analyses because they reported suspicions regarding the fictitious nature of their opponent or the reaction time game. In addition, 2 participants were excluded from the analyses due to noncompliance (removing headphones, texting during TAP). Thus, data from 132 participants were included in the study with participants randomly assigned to either the control group ($n = 68$) or inhibitory stimulus group ($n = 64$). For both phases, participants were compensated with course credit. See Table 1 for the sample’s demographic information.

Measures

Buss–Perry aggression questionnaire–short form

The BPAQ (Buss & Perry, 1992) is a frequently used, self-report measure of trait aggressiveness with adequate psychometric properties (Bernstein & Gesn, 1997; Harris, 1995, 1997; Tremblay & Ewart, 2005). Bryant and Smith (2001) demonstrated that the 12-item version (BPAQ–SF) explained an acceptable proportion of common variance (goodness of fit index (GFI) = .89–.94; root mean square error of approximation = .063–.091) and demonstrated comparable internal consistency ($\alpha = .88–.92$; this study: $\alpha = .86$) to the original measure (see also Diamond & Magaletta, 2006; Greenberg, Riggs, Bryant, & Smith, 2003; Webster et al., 2014).
Respondents on the BPAQ–SF use a 6-point scale to rate the extent to which each of 12 aggression-related statements is self-descriptive, ranging from 1 (uncharacteristic) to 6 (characteristic). No empirical studies have established useful cutoff scores to identify particularly highly trait aggressive individuals. However, to provide a general benchmark to interpret responses, total scores approximately near or above the midpoint (i.e., 36 of 72) have been shown to be predictive of a history of violence perpetration (Diamond & Magaletta, 2006).

Taylor aggression paradigm

The TAP (Taylor, 1967) is a widely used and psychometrically sound (Giancola & Chermack, 1998; Giancola & Parrott, 2008) analog measure of aggressive behavior in which participants are led to believe they are involved in a reaction time competition with an unseen, peer opponent. This study used a computer interface (SuperLab Pro 4.0) wherein each participant engaged in a series of one-on-one reaction time trials. Participants were told the winner of each trial was determined by whoever first releases a button in response to a cue. In reality, each participant competed against a prearranged schedule of wins and losses and not another participant in the

<table>
<thead>
<tr>
<th>Demographic variable</th>
<th>Percentage</th>
<th>n</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20.5%</td>
<td>27</td>
<td>18</td>
<td>18</td>
</tr>
<tr>
<td>47.0%</td>
<td>62</td>
<td>19</td>
<td>19</td>
</tr>
<tr>
<td>18.9%</td>
<td>25</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>3.8%</td>
<td>5</td>
<td>21</td>
<td>21</td>
</tr>
<tr>
<td>8.3%</td>
<td>11</td>
<td>22–30</td>
<td>22–30</td>
</tr>
<tr>
<td>1.5%</td>
<td>2</td>
<td>No response (at least 18)</td>
<td></td>
</tr>
<tr>
<td>Ethnicity</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>62.1%</td>
<td>82</td>
<td>White</td>
<td>White</td>
</tr>
<tr>
<td>12.9%</td>
<td>17</td>
<td>Black</td>
<td>Black</td>
</tr>
<tr>
<td>9.8%</td>
<td>13</td>
<td>Asian</td>
<td>Asian</td>
</tr>
<tr>
<td>8.3%</td>
<td>11</td>
<td>Hispanic</td>
<td>Hispanic</td>
</tr>
<tr>
<td>3.8%</td>
<td>5</td>
<td>Multiethnic</td>
<td>Multiethnic</td>
</tr>
<tr>
<td>2.3%</td>
<td>3</td>
<td>Ethnicity not listed</td>
<td>Ethnicity not listed</td>
</tr>
<tr>
<td>0.8%</td>
<td>1</td>
<td>No response</td>
<td>No response</td>
</tr>
<tr>
<td>Religious identity</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>40.9%</td>
<td>54</td>
<td>Catholic</td>
<td>Catholic</td>
</tr>
<tr>
<td>29.5%</td>
<td>39</td>
<td>Protestant</td>
<td>Protestant</td>
</tr>
<tr>
<td>12.9%</td>
<td>17</td>
<td>No religious affiliation</td>
<td>No religious affiliation</td>
</tr>
<tr>
<td>12.9%</td>
<td>17</td>
<td>Religious affiliation not listed</td>
<td>Religious affiliation not listed</td>
</tr>
<tr>
<td>1.5%</td>
<td>2</td>
<td>Jewish</td>
<td>Jewish</td>
</tr>
<tr>
<td>0.8%</td>
<td>1</td>
<td>Islamic</td>
<td>Islamic</td>
</tr>
<tr>
<td>1.5%</td>
<td>2</td>
<td>No response</td>
<td>No response</td>
</tr>
<tr>
<td>Family yearly income</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.8%</td>
<td>9</td>
<td>Less than $25,000</td>
<td>Less than $25,000</td>
</tr>
<tr>
<td>22.7%</td>
<td>30</td>
<td>Between $25,000 and $50,000</td>
<td>Between $25,000 and $50,000</td>
</tr>
<tr>
<td>22.0%</td>
<td>29</td>
<td>Between $50,000 and $75,000</td>
<td>Between $50,000 and $75,000</td>
</tr>
<tr>
<td>45.5%</td>
<td>60</td>
<td>More than $75,000</td>
<td>More than $75,000</td>
</tr>
<tr>
<td>3.0%</td>
<td>4</td>
<td>No response</td>
<td>No response</td>
</tr>
<tr>
<td>Sexual orientation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>97.7%</td>
<td>129</td>
<td>Heterosexual</td>
<td>Heterosexual</td>
</tr>
<tr>
<td>0.8%</td>
<td>1</td>
<td>Bisexual</td>
<td>Bisexual</td>
</tr>
<tr>
<td>1.5%</td>
<td>2</td>
<td>No response</td>
<td>No response</td>
</tr>
</tbody>
</table>
adjacent room, as they were told. The participant was instructed before each trial to preset the intensity level of the noise blast that would be delivered to the opponent should the participant win that trial. The noise blast loudness increased in 5-dB increments from 60 dB at the first level to 105 dB at the tenth, and highest, level. The noise blast was sampled from a large set of standardized, emotionally evocative sound stimuli (Bradley & Lang, 2007). In total, 30 reaction time trials were conducted, separated into three blocks of 10 trials. The dB levels delivered to participants during each block were 65 to 70 dB in Block 1, 80 to 85 dB in Block 2, and 95 to 100 dB in Block 3. All participants won half the trials in a fixed but seemingly randomized order. Whether or not the participant received a noise blast, he was shown on the monitor the volume level the confederate had selected for that trial. The dependent variable of the TAP was the mean noise blast intensity level set by the participant during each block.

Deception check questionnaire

The Deception Check Questionnaire (DCQ) is a modified version of a measure developed by Wallace and Taylor (2009) that assessed the successfulness of TAP deception. The DCQ includes qualitative and quantitative items that assess the participant's memory of the delivered inhibitory stimulus and the participant's knowledge of experimental controls including the fictitious nature of the opponent, the prearranged schedule of wins and losses, and the changes in noise blast intensity levels. Six participants reported on the DCQ that they suspected the reaction time game or the opponent was fictitious and, as noted earlier, were excluded from the analyses.

Demographic questionnaire

The demographic questionnaire included questions on age, ethnicity, religion, family income, and sexual orientation.

Procedure

The institutional review board of the first author's institution approved the following procedures. During Phase 1, the participants' instructors administered the BPAQ–SF as a part of a mass testing session that included a packet of several brief self-report measures to be used by a variety of departmental studies. During Phase 2, one experimenter (male graduate student) ran all participants. The experimenter was aware of the study's hypothesis but could not view participants' BPAQ–SF scores before random assignment or implementing the procedure.

On arrival to the lab, each participant was asked to wait alone in a small room until his male opponent was ready to begin. In actuality, there was no opponent.
While the participant waited, the experimenter’s muffled voice could be heard reviewing the instructions in the adjacent room, ostensibly to another participant. After being informed that the opponent was ready to begin, the participant was oriented to a computer monitor and speaker and asked to read along with narrated instructions for the reaction time competition. The experimenter then entered the participant’s room and said, “Please wait about 15 seconds for the game to begin while I make sure the other participant is ready to go.” After about 15 seconds, the experimenter returned and told participants randomly assigned to the inhibitory stimulus group:

Okay, we’re ready to begin. And, by the way, the noise blasts can be irritating. In the past, we have found that when participants use high levels of noise blasts, their opponents generally respond with high levels. We recommend that you use low levels, that is, below a 3 on the 10-point scale.

For participants assigned randomly to the control group, the experimenter only said, “Okay, we’re ready to begin.”

The inhibitory stimulus was constructed to evoke a variety of inhibitory processes such as empathy for the opponent, expectation of retaliation, and obedience. Whereas some real-world inhibitory stimuli are brief (e.g., “turn the other cheek”), the current stimulus was comprehensive. The first sentence was intended to orient the participant to the present situation. The second sentence established the noise blasts as “irritating” stimuli before the participant was afforded an opportunity to experience the noise blast. The third sentence described contingencies wherein opponents generally reciprocate high levels of noise blasts. The fourth sentence suggested the participant use low levels of noise blasts. The stimulus specified both performance (i.e., “we recommend that you use low levels”) and likely consequences (i.e., “when participants use high levels of noise blasts, their opponent generally responds with high levels”) because studies have demonstrated that verbal stimuli with both specifications are especially likely to influence behavior (Catania et al., 1989).

Results

The BPAQ–SF total scores approximated a normal distribution and included no outliers ($M = 32.22$, $SD = 10.89$). The distribution of scores was consistent with previous undergraduate samples (Webster et al., 2014). Thus, our sample did not seem to include a preponderance of particularly highly aggressive individuals, but rather appeared to reflect typical variation in trait aggressiveness that would be expected in an undergraduate sample within the United States. Experimental groups did not differ in BPAQ–SF scores. The distribution of mean aggression scores on the first TAP block was positively skewed and leptokurtic and the distribution of scores on the third TAP block was negatively skewed. Bivariate scatterplots between TAP blocks illustrated linearity but also heteroskedasticity. Further, bivariate scatterplots
between experimental groups at each TAP block illustrated possible heterogeneity at the first and third TAP blocks; specifically, the inhibitory stimulus group appeared to have a floor effect at the first TAP block and the control group appeared to have a ceiling effect at the third TAP block. Transformations (trimming or Windsorizing) did not improve heteroskedasticity; therefore, all analyses used untransformed data.

Data were analyzed using a repeated measures general linear model incorporating Trait Aggressiveness (continuous predictor) × Provocation (Block 1, Block 2, Block 3) × Experimental Manipulation (inhibitory stimulus, control), with provocation being the within-subject variable and the mean TAP aggression scores at each block being the dependent variable. Mauchly’s test indicated that the assumption of sphericity had been violated, \(\chi^2(2) = 63.758, p < .001 \); however, conservative corrections to degrees of freedom did not affect significance tests and therefore were not used. See Figure 1 for graphed illustrations of results.

Figure 1. Mean Taylor Aggression Paradigm aggression scores for different levels of trait aggressiveness (TA; low, moderate, high) across three levels of provocation (Block 1, Block 2, Block 3), separated by experimental groups (control group, inhibitory stimulus group). Bars represent standard error of means. TA is used as a continuous variable to test predictions; however, for the purpose of illustrating raw data, TA is depicted as three, similar-sized groups. Participants scoring 28 or less on the Buss–Perry Aggression Questionnaire were placed in the low TA group (control = 21, inhibitory stimulus = 22), from 29 to 36 in the moderate TA group (control = 26, inhibitory stimulus = 21), and 37 or more in the high TA group (control = 21, inhibitory stimulus = 21).
Significant omnibus tests include a main effect of provocation, \(F(2, 256) = 277.68, p < .001, \eta^2_p = .68 \). Specifically, mean TAP aggression scores increased across TAP blocks from 3.50 (SD = 1.81) to 4.88 (SD = 1.93) to 6.73 (SD = 2.36). Post-hoc pairwise comparisons found each level of provocation to be significantly different (all \(ps < .001 \)), thus demonstrating that participants detected the increases of provocation. In addition, significant omnibus tests demonstrated a main effect of the inhibitory stimulus, \(F(1, 128) = 22.18, p < .001, \eta^2_p = .15 \). Specifically, participants assigned to the control group exhibited higher mean TAP aggression scores (\(M = 5.71, SD = 1.71 \)) than the inhibitory stimulus group (\(M = 4.32, SD = 1.67 \)). Critically, as predicted, these main effects are qualified by a significant three-way interaction among trait aggressiveness, provocation, and the inhibitory stimulus, \(F(2, 256) = 4.84, p = .009, \eta^2_p = .04 \).

Next, to unpack the three-way interaction, post-hoc repeated measures general linear models between trait aggressiveness and provocation revealed significance in the control group, \(F(2, 132) = 7.74, p < .001, \eta^2_p = .11 \), but not in the inhibitory stimulus group, \(F(2, 124) = 1.07, p = .346, \eta^2_p = .02 \).

Finally, to unpack the significant two-way interaction within the control group, bivariate correlations revealed that trait aggressiveness positively and significantly predicted mean TAP aggression scores only during the third block, \(r_{TA-B3}(66) = .24, p = .047 \), two-tailed test. Specifically, within the third block in the control group, BPAQ–SF scores at 1 SD above the mean predicted a TAP aggression score of 7.86, whereas BPAQ–SF scores at 1 SD below the mean predicted a TAP aggression score of 6.99. No significant correlation was found between trait aggressiveness and aggression scores on either first block, \(r_{TA-B1}(66) = -.11, p = .354 \), or second block, \(r_{TA-B2}(66) = .14, p = .244 \). An adaptation of Steiger’s Z test (Hoerger, 2013) demonstrated that the correlations at the first block (\(r_{TA-B1} \)) and third block (\(r_{TA-B3} \)) were significantly different from each other (\(Z_H = -2.22, p = .026 \)). Thus, as predicted, the results demonstrated that in the absence of an inhibitory stimulus, participants rated higher in trait aggressiveness exhibited greater increases in mean TAP aggression scores as levels of provocation increased. Further, in the presence of an inhibitory stimulus, individual differences in trait aggressiveness had no relationship with aggression scores at any level of provocation.

Discussion

Research over the past several decades has established trait aggressiveness as a predictor of aggressive responding to provocation (Bettencourt et al., 2006); however, aggressive behavior often occurs within contexts that include both provocative and inhibitory stimuli. This study examined how trait aggressiveness manifests when participants, prior to experiencing provocation, are
subjected to an inhibitory stimulus. Findings are consistent with the hypothesis that inhibitory stimuli can diminish the sensitivity to respond aggressively to provocative stimuli that is characteristic of individuals high in trait aggressiveness.

Trait aggressiveness might be a robust predictor of aggressive behavior, but it is only one of many determinants, some of which are inhibitory factors that can alter the predisposition to aggress. From an applied perspective, the impetus is for researchers to better understand these inhibitory factors, as personality variables such as trait aggressiveness might be less easily changed. One key determinant of aggressive behavior is whether or not the individual considers possible consequences and then reappraises the situation in light of those consequences (Anderson & Bushman, 2002). Although it is impossible to say with certainty, the inhibitory stimulus used in this study might have interfered with aggressive responding by reminding the participants of the consequences of aggression. Given that a foreshortened time perspective is associated with aggressive responding (e.g., Joireman, Anderson, & Strathman, 2003), bringing future consequences into the decision-making process might deter aggressive responding.

The results of this study can be examined from the perspective of \(I^3 \) theory, a metatheoretical framework for conceptualizing the interplay between the many risk and protective factors of aggressive behavior (Finkel, 2014; Slotter & Finkel, 2011). Specifically, \(I^3 \) theory posits that three processes (impellance, instigation, and inhibition) interact to affect both the urge to aggress (i.e., state-level anger) and whether the person will act on the urge. Impellance refers to aspects of the individual or situation that prepare one to experience a strong urge to aggress (e.g., trait aggressiveness). Instigation refers to the behaviors of others that increase the urge to aggress (e.g., provocation). Thus, the urge to aggress is a product of the main and interactive effects of impellance and instigation. Inhibition refers to aspects of the individual or situation that decrease the likelihood of the urge being manifested in aggressive behavior. Central to \(I^3 \) theory (Finkel, 2014) is the notion that although the urge to aggress can vary across situations and individuals, inhibitory processes can potentially override aggressive urges, thus reducing aggressive behavior. As such, this perspective assumes the prediction of aggressive behavior is best achieved by considering both aggressive urges and inhibition processes. \(I^3 \) theory proposes a “perfect storm situation” such that aggression is most likely to be severe when instigation and impellance are high and inhibition is low.

The three-way interaction found in this study is consistent with the \(I^3 \) theory framework. In the no inhibitory stimulus condition, \(I^3 \) theory’s so-called perfect storm situation is evident. Specifically, when there was no inhibitory stimulus (low inhibition), those high in trait aggressiveness (high impellance) increased aggressive responding as provocation increased (high
instigation). The increase in aggressive responding is shallower for low trait aggressive individuals due to their lower dispositional readiness to experience the urge to aggress in response to instigation. Under the inhibitory stimulus condition, trait aggressiveness had no discernible effect on aggressive behavior. From the perspective of I3 theory, the inhibitory stimulus reduced the likelihood of the urge to aggress producing aggressive behavior. Future studies might provide a more rigorous test of I3 theory's assumptions regarding the “urge to aggress” by measuring participants' state-level anger throughout the administration of a behavior analog measure of aggression. Further, future studies adopting this methodology should concurrently assess potential mediating variables (e.g., empathy, anticipation of contingencies, fear of retaliation, obedience) to better understand the underlying psychological processes that are affected by inhibitory stimuli.

Research implications

Mounting empirical evidence supports I3 theory's framework for predicting how various processes interact to increase the risk of aggressive behavior. Perhaps the most important contribution of this work has been a greater appreciation of inhibitory processes. Whereas previous studies have found high impellance individuals in high provocation situations are sensitive to person-level inhibitory processes (e.g., self-control, executive function, relationship commitment; Finkel et al., 2012; Slotter et al., 2012; Watkins, DiLillo, Hoffman, & Templin, 2015), this study’s results extend the emerging I3 theory literature by showing that high impellance individuals in high instigation situations are also sensitive to situation-level inhibitory processes. This finding is consistent with a recent study that found brief instructions to reappraise upsetting scenarios reduced aggressive verbalizations among individuals with a history of intimate partner aggression (Maldonado, DiLillo, & Hoffman, 2015). Although the reported effect sizes are generally small in this wave of studies on aggression inhibition, including this study, future applied research is needed to elucidate any meaningful reductions in aggression resulting from inhibitory mechanisms. Studies in this vein can add explanatory power by investigating mediators and moderators of inhibitory processes.

As argued by Pinker (2011), compelling historical evidence suggests rates of aggressive behavior have declined over the decades and centuries. Pinker suggested the decline of violence is largely due to exogenous protective factors such as aggression-deterring laws and rules delivered by legislators and moral authorities. However, despite downward trends in societal rates, aggressive behavior continues to occur even in the presence of environmentally situated inhibition. In this light, one notable aspect of the findings reported here is that participants (on average) did not fully adhere to the
inhibitory stimulus by using only low noise blasts. This study was not designed to assess why participants varied in their responses to the inhibitory stimulus. Thus, the findings raise questions regarding (a) the psychological mechanisms that are evoked by inhibitory stimuli, (b) how these mechanisms exert their effects, and (c) the boundary conditions of their effects.

Clinical implications

The significant results warrant further investigation into the clinical utility of contingency-specifying statements in the treatment of aggressive individuals. It is possible that teaching clients to use self-statements invoking aggression-deterring rules might inhibit aggressive responding. Because inhibiting aggression under conditions of provocation is particularly difficult for aggressive individuals, this study’s demonstration of effective inhibition even under the highest levels of provocation speaks to the potential power of this strategy. One interpretation of the findings is that aggressive behavior, especially for individuals high in trait aggressiveness, partially results from a failure to consider future consequences. If so, bringing aversive consequences into the present for consideration could have a deterrent effect on aggression. Effective cognitive-behavioral treatments for aggressive behavior often aim to help clients identify problems, anticipate consequences, and generate alternative solutions (McGuire, 2008; Wilson, Bouffard, & Mackenzie, 2005). More research is needed to elucidate the characteristics of the most effective contingency-specifying statements and the most effective means to develop this potentially adaptive strategy.

Limitations

One limitation of this study was the use of a composite inhibitory stimulus that included an empathy element, a specification of a contingency, and a recommendation, but not a prohibition. Although it might be difficult to implement in an experimental context, the effects of a clear prohibition should be examined. Further, these findings do not provide insights with regard to specific inhibitory processes (e.g., empathy, avoidance of retaliation, compliance to authority). Future studies should include postmanipulation questionnaires to ensure not only that the instruction was processed and remembered, but also to assess the participant’s reasons for why it was followed or not followed. Similarly, an additional limitation is that, due to the use of prearranged contingencies within the TAP, the accuracy of the inhibitory stimulus was dependent on the extent to which each participant reciprocated noise blast intensity levels; thus, the statement’s accuracy varied slightly across participants. Although the chosen experimental manipulation might be similar to real-world inhibitory stimuli, it also prevents us from
being able to specify its effective components (e.g., contingency vs. performance specification, ambiguity, valence, accuracy, timing, source, and extrinsic reinforcement). Additional research deconstructing the effects of each of these components is clearly warranted.

As always, the ecological validity of these findings is unknown, as the forces at play in real-world aggression situations (e.g., social pressure, face-saving, and self-protection) are difficult to simulate. For example, having to defend one’s perceived manhood in the presence of one’s female companion might override any prohibitions imposed by laws, self-talk, or potential aversive future consequences. Future studies could benefit from complementing behavior analog measures with self-report techniques such as daily diary methods that do not restrict situational contexts in which provocation and aggressive behavior occur. Finally, future studies in this area should also consider using mixed sexes, using different populations, and controlling for related constructs that might confound results such as social desirability and impulsivity.

Conclusions

Findings from this study demonstrate that men high in trait aggressiveness could be influenced by situational inhibitory stimuli. In fact, these findings suggest situational inhibition might actually attenuate the effects of trait aggressiveness on aggressive behavior, which converges with recent arguments for including inhibitory processes in conceptual models (e.g., Γ^3 theory; Finkel, 2014). This evidence bodes well for clinical interventions that aim to reduce aggressive responding by helping clients become more aware of the antecedents and consequences of their aggressive behavior. These findings encourage further exploration into the power of inhibitory stimuli to suppress aggressive behavior.

References

