An approach to modified heterocyclic analogues of huperzine A and isohuperzine A. Synthesis of the pyrimidone and pyrazole analogues, and their anticholinesterase activity

Alan P. Kozikowski, Giuseppe Campiani, Vito Nacci, Alessandro Sega, Ashima Saxena and Bhupendra P. Doctor

Georgetown University Medical Center, Institute for Cognitive and Computational Sciences, 3970 Reservoir Road, N.W., Washington, DC 20007-2197, USA
Dipartimento Farmaco Chimico Tecnologico, Siena University, Banchi di Sotto 55, 53100 Siena, Italy
Istituto di Chimica Organica, Siena University, Pian dei Mantellini, 44 53100 Siena, Italy
Division of Biochemistry, Walter Reed Army Institute of Research, Washington, DC 20307, USA

Synthetic approaches to the pyrimidone and the pyrazole analogues of the naturally occurring acetylcholinesterase (AChE) inhibitor huperzine A and its unnatural regioisomer, isohuperzine, are described. The pyrimidone analogues of huperzine A were obtained starting from cyclohexane-1,4-dione unsaturated three-carbon bridge using the previously described palladium-catalysed cycloannulation methodology. A major problem in this synthetic undertaking proved to be introduction of the ethylidene moiety was eventually introduced using the Danheiser methodology which involves a two step reaction sequence consisting of the intermediate construction of a β-lactone, which in turn undergoes a [2 + 2] cyclodervative leading to the desired olefin. This β-lactone synthesis, which has not previously been applied to β-keto esters, was found to proceed with excellent diastereoselectivity. In turn, the β-lactone underwent a stereospecific decarboxylation reaction to provide the E-olefin product as the sole isomer. Additionally, starting from the bicyclo[3.3.1]nonene intermediate 2 we describe a synthetic strategy for procuring modified heterocyclic analogues of isohuperzine A. This chemistry provides an attractive approach to the synthesis of heterocyclic analogues with unsaturation in the 6,7 position. While none of these new analogues was found to rival huperzine A in its ability to act as a reversible inhibitor of AChE, the data reported herein should prove useful to modeling efforts aimed at acquiring a better understanding of huperzine A’s binding topology within AChE.

Introduction

The role of acetylcholine (ACh) in the modulation of memory function in both the normal and pathological states has been extensively reviewed. 1 In general, the central cholinergic system is important in the regulation of memory and learning processes, and impairment of memory has been shown to occur following blockade of cholinergic function with antimuscarinic agents. 2 On the other hand, a variety of cholinergic agonists have been shown to improve memory in both man and animal. 3 Furthermore, conditions involving memory loss, such as dementia of the Alzheimer’s type (AD), are accompanied by a loss of basal forebrain neurons and reduced cortical and hippocampal levels of the neurotransmitter acetylcholine. Treatment of dementia with cholinergic agonists has not generally proven to be therapeutically useful, especially for reasons relating to the manifestation of peripheral side effects. On the other hand, experimental findings regarding reduced muscarinic receptor density together with a reduction in ACh levels in the AD brain have prompted the investigation and development of inhibitors of the enzyme acetylcholinesterase (AChE). This enzyme is responsible for the rapid degradation of the important neurotransmitter ACh to choline and acetate ion. Thus, among the possible therapeutic approaches aimed at increasing cholinergic tone in the central nervous system (CNS) which includes, inter alia, the investigation of muscarinic and nicotinic agonists, 5-HT3 receptor antagonists, and facilitators of ACh release, the use of reversible AChE inhibitors is considered, at present, to represent one of the more attractive therapeutic approaches to the treatment of AD. While the well-known cholinesterase inhibitor physostigmine has been found to provide a moderate but consistent enhancement in memory function, its use has been limited by its short duration of action. On the other hand, the reversible AChE inhibitor tetrahydromonoamine oxidase (THA or Cognex) is currently marketed for use in the long-term palliative treatment of AD. Unfortunately, the severe liver toxicity associated with this drug as well as side effects stemming from its low target specificity (competing blockade of K+ ion channels, M1 and M2 receptor antagonism, and inhibition of butyrylcholinesterase) conspire to limit its widespread applicability. 4

Another reversible AChE inhibitor which is a natural product, and which has attracted considerable attention for its possible use in the treatment of AD is huperzine A. This compound was first isolated from the clubmoss Huperzia serrata by Liu and co-workers. This natural product has proven to be a very potent (Ki = 6.2 nmol L−1 for FBS AChE) and selective inhibitor of AChE with almost no action on BuChE. Additionally, when tested on nearly 40 other receptor and enzyme systems, huperzine A was found to have no activity. Several reports reveal huperzine A to produce a relatively long-term inhibition of AChE (about 6 h in rats), increasing the level of ACh in the cortical areas and hippocampus. In double-blind-placebo controlled studies conducted in China, huperzine A has been found to dramatically improve the cognitive performance of individuals suffering from various forms of memory...
impairment. Huperzine A thus appears to be a promising psychotherapeutic agent for the treatment of AD patients, and as such to be a worthy target for continued synthetic manipulations aimed at understanding the structural elements responsible for its in vitro and in vivo activity and selectivity. Although we have previously reported on a number of modifications to this structure including alterations of the amino group, the three-carbon bridge, and the ethylidene side chain, few attempts have been made to examine alterations to its pyridone ring. Accordingly, we imagined that replacement of its pyridone ring by a pyrimidone ring might possibly lead to an analogue showing improved AChE inhibitory potency due to its ability to engage in additional H-bonding. Furthermore, starting from the bicyclic structure shown in Fig. 1 we have developed a synthetic strategy to modified heterocyclic analogues of the unnatural huperzine A regioisomer for which we propose the name isohuperzine A. In the course of these studies and as detailed herein we uncovered a novel application of Danheiser’s β-lactone methodology for the stereoselective olefination of β-keto esters. Rather remarkably, this methodology is shown to provide solely the E-olefinic products.

Chemistry: Synthesis of the pyrimidone analogues of huperzine A

In one of our previous papers we described the initial results and problems issuing from a strategy designed to procure modified heterocyclic huperzine A analogues using the bicyclo[3.3.1]nonane derivative 1 as a common intermediate. In that article we reported a possible approach to the synthesis of a thiazole analogue of huperzine A. On applying the Gewald aminothiazole synthesis to urethane 1, we were able to obtain a single aminothiazole but, unfortunately, this product possessed the undesired regiochemistry. Apparently, for steric reasons, position 4 of urethane 1 is more reactive than position 2, the site at which functionalization is required in order to generate the desired regioisomer. On the basis of these negative results, and as delineated in Scheme 1, the first approach to the pyrimidone analogue 23 using urethane 1 that we chose to explore required that we block the C-2 position. This process was attempted by utilizing the thiokeletal blocking group strategy developed by Woodward. The urethane 1 was thus reacted with methyl formate in the presence of sodium tert-amlyoxide to afford the hydroxymethylene intermediate 2, which on treatment with trimethylene bis(thiooxylate) and potassium acetate provided 3 in good overall yield. Unfortunately, while the bicycle 3 is suitably blocked at C-4, this intermediate failed to undergo hydroxymethylation at the C-2 position, a prerequisite for further elaboration of the pyrimidone ring.

Chemistry: Synthesis of the pyrimidone analogues of huperzine A

In one of our previous papers we described the initial results and problems issuing from a strategy designed to procure modified heterocyclic huperzine A analogues using the bicyclo[3.3.1]nonane derivative 1 as a common intermediate. In that article we reported a possible approach to the synthesis of a thiazole analogue of huperzine A. On applying the Gewald aminothiazole synthesis to urethane 1, we were able to obtain a single aminothiazole but, unfortunately, this product possessed the undesired regiochemistry. Apparently, for steric reasons, position 4 of urethane 1 is more reactive than position 2, the site at which functionalization is required in order to generate the desired regioisomer. On the basis of these negative results, and as delineated in Scheme 1, the first approach to the pyrimidone analogue 23 using urethane 1 that we chose to explore required that we block the C-2 position. This process was attempted by utilizing the thiokeletal blocking group strategy developed by Woodward. The urethane 1 was thus reacted with methyl formate in the presence of sodium tert-amlyoxide to afford the hydroxymethylene intermediate 2, which on treatment with trimethylene bis(thiooxylate) and potassium acetate provided 3 in good overall yield. Unfortunately, while the bicycle 3 is suitably blocked at C-4, this intermediate failed to undergo hydroxymethylation at the C-2 position, a prerequisite for further elaboration of the pyrimidone ring.

Because of the above problem, we decided to redesign our original synthetic approach, and to begin anew by elaborating the pyrimidone ring at an earlier stage. This idea demanded that we prepare a pyrimidine bearing bicycle along synthetic lines similar to those followed in our construction of huperzine A itself. Cyclohexane-1,4-dione monoethylene ketal 4 serves as a convenient starting material, for it contains both a free carbonyl group for elaborating the heterocyclic ring and a masked one which upon deprotection can be used to introduce the remaining three-carbon bridge and the ethylidene appendage.

Following this strategy, ketone 4 was hydroxymethylated, and 5 reacted in turn with benzoyl chloride and K₂CO₃ to provide the benzoxo ester 6. Upon reaction of 6 with O-methylisourea hydrogen sulfate, the quinazoline 7 was isolated in 68% yield. Deketalization of quinazoline 7, followed by methoxyxocarbonylation using Mander’s reagent gave the β-keto ester 9 (Scheme 2). In our early efforts to graft the three-carbon bridge to 9, we examined the combined Michael addition–aldol condensation sequence as described in the early synthesis of huperzine A. The reaction of 9 with methacrolein using 1,1,3,3-tetramethylguanidine (TMG) as the base catalyst provided the expected cyclic ketol as a mixture of stereoisomers in 85% yield. This intermediate was mesylated, and the mesylate reacted in turn with collidine to effect elimination (Scheme 3). Because the elimination reaction to give 11 was found to proceed in only 8% yield, we chose at this stage to investigate the alternative palladium-catalysed bicyclo-annulation route to 11. As depicted in Scheme 2, this palladium-catalysed reaction using DBU as a base, 2-methylene-propane-1,3-diocetate as the bis-electrophile, and tetrakis(triphenylphosphine)palladium(0) as the catalyst afforded the exocyclic olefin 10 in 76% yield. Unfortunately, we were unable to isomerize 10 to its endocyclic counterpart 11 using either triflic acid or rhodium chloride. In an effort to circumvent this problem, we decided to proceed with the other
steps in the synthesis and to defer the double-bond isomerization step to the last stage of the synthesis. Thus, from the β-keto ester 10 installation of the (E)-ethylidene side chain at C-11 was required. Compound 10 was subjected to various olefination protocols [eqn. (1), and Schemes 4 and 5]. Wittig olefination with Ph₃P=Et⁻ Br⁻ and BuLi was attempted under a variety of reaction conditions, but these attempts led to the formation of the fragmentation product 12 in about 70% yield [eqn. (1)]. Examination of the Takai ethylidenation protocol using 1, I-diiodoethane and CrCl₃ resulted in no reaction, while a modified procedure involving treatment with Zn, TiCl₄, and 1,1-diodoethane²⁰ led solely to reduction to alcohol 13 in 85% yield [eqn. (1)].

Further investigations eventually led us to the possibility of utilizing the method reported by Danheiser in 1991 for the construction of alkenes from β-lactone intermediates.²¹ The anion of the benzenethiol ester of propionic acid was accordingly added to the ketone 10 to provide the sterically less crowded β-lactone diastereoisomer 18 with complete stereoselectivity. Upon heating of 18 in the presence of silica gel in toluene as solvent, [2 + 2] cycloreversion with elimination of carbon dioxide took place to afford the required E-configured olefinic product 19.²² This olefination strategy involved one more step than the classic Wittig reaction, but it proved to be the more practical and efficient method.

In order to obtain additional information on the stereochemical course of this olefination methodology, which had not previously been applied to β-keto esters, we chose to synthesize the oxetanone derivatives 16 starting from the β-keto esters 15. The oxetanone 16b was a particularly useful model for this stereochemical study, owing to its more readily assignable NMR spectrum than that of 16a or 18. The two β-lactones 16a and 16b were in fact found to undergo facile [2 + 2] cycloreversion reactions to generate the (E)-olefins 17a and 17b in good overall yield, thus further confirming the stereospecificity of this olefination method at least for such tricyclic β-keto esters (Scheme 4). Of particular interest to this investigation was the stereochemical outcome of the β-lactone forming step. The orientation of the methyl group of the oxetanone in 16 and 18 was found to be trans to the carbomethoxy group on the basis of
detailed NMR analyses (Fig. 3). While further mechanistic considerations of this reaction are provided below, it is of some interest to note here that this olefination protocol may also represent a practical alternative route to the Wittig reaction and subsequent isomerization step used in our first synthesis of huperzine A.

Having solved the olefination problem, we were now able to return to the main course of our synthetic endeavour. Saponification of 19 with sodium hydroxide yielded the crystalline acid 20 (Scheme 5). Curtius reaction of 20 by treatment with diphenyl azidophosphate and Et$_3$N, followed by methanolysis of the resulting isocyanate provided the urethane 21 (90% yield). Trimethylsilyl iodide promoted deprotection of 21 in refluxing chloroform proceeded uneventfully, although partial isomerization of the exocyclic double bond to the endocyclic olefin was observed. By exposure of this mixture to triflic acid in dioxane at 92 °C the isomerization reaction was driven to completion, and the pyrimidone analogue 23 was isolated as the sole product in 87% yield. To deprotect 21 without rearrangement of the exocyclic double bond, the urethane 21 was treated with lithium propylmercaptide. This method provided the $\beta$-methylene analogue 22. Exposure of 22 in turn to triflic acid in a resealable tube at 90 °C gave 23 in 84% yield.

**Synthesis of isohuperzine analogues bearing a modified heterocycle**

We and others have over the past several years described a number of huperzine A analogues which embody various structural changes. Among the structural elements believed to be relevant to huperzine A's interaction with acetylcholinesterase is the unsaturation present in the three-carbon bridge. While some attempts have been made to 'shift' the endocyclic double bond of huperzine A from the 7,8-position to 6,7-position, these attempts have proven unsuccessful. In fact, we have shown previously that the 7-methylene analogue of huperzine A can be isomerized under triflic acid conditions to afford solely huperzine A. No trace of the isomer with unsaturation in the 6,7-position could be detected, thus providing evidence that the isomer with unsaturation at the 7,8-position, i.e. huperzine A, is the thermodynamically favoured product. This finding led us to hypothesize that the position of fusion of the heterocyclic ring to the bicyclo[3.3.1]nonene may affect isomer stability, and accordingly, the position of the double bond in the three-carbon bridge. This hypothesis, put forth in a previous paper, is confirmed herein with the synthesis of four isohuperzine analogues, namely the pyrimidone and the pyrazole analogues. These analogues gave...
us the opportunity to investigate the rearrangement of the endocyclic double bond relative to the condensed heterocycle, and the influence that the position of this bond might have upon the interactions of these compounds with AChE.

The hydroxymethylene derivative 2 was found to be a versatile starting material for the preparation of the isohuperzine analogues featured in Schemes 6 and 7. Thus, benzylation of 2 afforded a mixture of the cis- and trans-esters 24 and 25 in a 9:1 ratio, respectively. Reaction of the mixture with O-methyl isourea hydrogen sulfate in DMF gave the urethane 26 in 37% yield. TMSI-promoted deprotection of 26 proceeded with the formation of a mixture of 28 and its double bond positional isomer 27. Complete rearrangement of this mixture to 27 was brought about by exposure to triflic acid at 84°C. Since a related double-bond rearrangement was not observed in the synthesis of huperzine A, and since 27 has the same relative positions of the endocyclic double bond and the heterocyclic ring as found in huperzine A, we conclude that isomer 27 is the thermodynamically favoured product. Rearrangement of the double bond of 26 could be avoided by using lithium propylmercaptide as the deprotection agent; 28 was formed as the sole product in 81% yield. In a similar manner the pyrazoles 30 and 31 were synthesized from 29, an intermediate obtained from 2 by reaction with hydrazine hydrate (Scheme 7).

Stereochemical course of β-lactone synthesis and structural assignments

Based upon the obtention of only the E-olefinic products from the β-lactone synthesis/cycloreversion protocol, we assume that only the sterically less crowded β-lactone diastereoisomers 18, 16a and 16b were formed in each case. This notion finds support in the work of Danheiser and Nowick who suggest that the initial 'rapid and reversible aldol condensation' step of the thiol ester enolates is followed by the preferential cyclization of the aldolate that provides the less congested tetrahedral intermediate (Fig. 2). In order to obtain experimental verification of the structure of one of our β-lactones, we carried out extensive NMR studies on 16b. Stereochemical assignment of the protons of 16b was made from 1H decoupling and 2D COSY experiments, while the stereochemistry of the methyl group of 16b was assigned from 1H NMR NOE experiments (Fig. 3).

The benzylic protons h and i were determined by their diagnostic chemical shifts at δ 2.18 (i) and at about δ 2.7...
In view of the relatively more dramatic structural alterations embodied by the alternately fused pyridone and pyrazole analogues 27, 28, 30, and 31, it is not surprising to find that these compounds are less active than huperzine A itself. Pyrimidone 27 is about 800-fold less active, while 28 is only about 36-fold less active. Somewhat less expected, however, is the finding that compounds 22 and 23 are even less active than 27 and 28 (>15 000-fold and 1540-fold, respectively), in spite of the fact that the former structures are more closely related to huperzine A. Apparently, the extra nitrogen atom present in these structures must confer an undesirable electrostatic interaction with the enzyme in addition to the unfavourable change in the energetics of desolvation. The approximately 30-fold difference observed in the activity of pyrazoles 30 and 31 is also striking and parallels the 24-fold difference found in the activity of pyrimidones 27 and 28, in both cases the more active isomer has, like huperzine A itself, the double bond in the three-carbon bridge directed away from the NH₂ group. The present work serves to further underscore the importance of huperzine A’s electronic field to its interaction with AChE. An in depth understanding of the ability of the alternatively fused pyrimidones 27 and 28 to serve as a modestly active AChE inhibitors will require the docking of these molecules to the X-ray structure available for T. californica AChE, a study now underway.

Conclusions

The present work delineates concise methodology for procuring huperzine A analogues bearing heterocyclic replacements for its pyridone ring. These synthetic efforts have led to the discovery of a useful application of the β-lactone/[2 + 2] cycloreversion approach for the stereoselective construction of a trisubstituted olefin.

In terms of biological activity, this work reveals that even the rather modest alteration made to the huperzine A structure through the replacement of one of its pyridone ring CH groups by nitrogen causes a major reduction in AChE inhibitory activity. While the drop in activity found for 23 can be rationalized in part to changes in the energetics of desolvation, it is surprising to find that this activity difference is greater than 1500-fold. Also noteworthy was the finding that the pyrimidones analogues 27 and 28 of isohuperzine are more active than the pyrimidone analogues 22 and 23. It is obvious that 27 and 28 must find modes for binding to AChE which are different from those of huperzine A itself. Through the use of X-ray co-crystallization studies and computer modeling methods, we currently seek a better understanding of these binding modalities, as well as of the nature of the interaction between the unsaturation in huperzine A’s three-carbon bridge and AChE. While preliminary studies in this direction have been published,23 more definitive studies will be reported in due course.

Experimental

General experimental information can be found in reference 4. IR spectra were obtained on a Perkin-Elmer FT-1600 instrument. GC–MS analyses were performed on a Hewlett-Packard 5890 11 instrument. GC–MS analyses were performed on a Hewlett-Packard 5890 11 instrument.

(9E)-(-)-(9-Ethylidene-6-(hydroxymethylene)-3-methyl-7-oxobicyclo[3.3.1]non-3-yl)carbamic acid methyl ester 2

To a solution of 1 (40 mg, 0.17 mmol) in dry toluene (0.4 ml) was slowly added sodium tert-ammyl oxide (25.6 mg, 0.22 mmol) in dry benzene (0.4 ml). The mixture was stirred for 1 h at room temp. under argon, then cooled in an ice-water bath, and methyl formate (21 µl, 0.34 mmol) was added dropwise. After the addition was complete, the mixture was allowed to warm to room temp. and stirred for 24 h. The reaction was quenched with water, and the mixture was extracted with dichlorometh-

Biological activity and discussion

The AChE inhibitory data for the new analogues are provided in Table 1 along with IC₅₀ value for racemic huperzine A.23,26

<table>
<thead>
<tr>
<th>Compound number</th>
<th>IC₅₀ ± (µmol 1⁻¹)</th>
<th>(n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(±)-Huperzine A</td>
<td>0.02 ± 0.005</td>
<td>3</td>
</tr>
<tr>
<td>22</td>
<td>&gt; 300</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>30.8 ± 10.0</td>
<td>3</td>
</tr>
<tr>
<td>27</td>
<td>16.6 ± 4.0</td>
<td>3</td>
</tr>
<tr>
<td>28</td>
<td>0.73 ± 0.10</td>
<td>3</td>
</tr>
<tr>
<td>29</td>
<td>3.48 ± 0.15</td>
<td>3</td>
</tr>
<tr>
<td>31</td>
<td>100 ± 9.6</td>
<td></td>
</tr>
</tbody>
</table>

IC₅₀ values are the mean ± standard deviation. The IC₅₀ values provided for compounds 22, 23, 27, 28, and huperzine A are for the inhibition of FRS AChE. The IC₅₀ values provided for 30 and 31 are for the inhibition of rat cortex AChE. Although different enzyme preparations have been used, comparisons between the IC₅₀ values for those reported above were obtained for 27 and 28 when tested for their inhibition of rat cortex AChE: 19.0 ± 3.4 µmol 1⁻¹ and 2.4 ± 0.6 µmol 1⁻¹, respectively.

(h). Furthermore, the 2D COSY spectrum revealed a long-range coupling between proton i and proton j. In the 1H NMR and COSY spectra, a correlation between proton i and proton j was also observed, while no coupling was found between proton k and proton l due to a dihedral angle of about 80°. Proton e appeared at δ 2.32 as a doublet of doublets; the smaller coupled to proton c at δ 2.32 and proton f at δ 4.26. Furthermore, the 2D COSY spectrum revealed a long-range coupling between the oxycyclic methylene protons c and d, respectively.

The stereochemistry of the methyl group of the β-lactone moiety together with the orientation of its ring oxygen were deduced primarily from the NOE experiments. Irradiation of 16b at δ 1.34 (CH₃) produced enhancements at δ 3.25 (2.3%, axial protons b and g), δ 4.26 (7%. proton l), and at δ 2.68 (2.3%, proton a). Irradiation of 16b at δ 4.26 (proton l) produced enhancement only at δ 1.34 (CH₃), while no enhancement was observed at δ 2.18 (proton i).

From these NMR results we conclude that the 3-methyloxetan-2-one ring of 16b is oriented so that its ring oxygen assumes an axial-like position at the spiro centre of the six-membered ring. The methyl group is accordingly located syn to the methyl carbon bearing H₂. Further support for the NMR-based stereochemical assignments derive from the silica gel promoted [2 + 2] cycloreversion reaction of the β-lactones 16a, 16b and 18, all of which lead solely to the E-olefins.
ane. The organic layer was removed, and the aqueous layer was adjusted to pH 4 with 6 mol \( \text{L}^{-1} \) HCl and extracted with dichloromethane. The combined organic extracts were dried (MgSO\(_4\)) and evaporated. The crude material (39 mg), which by \(^1\)H NMR analysis consisted of 9:1 mixture of the (E)- and (Z)-hydroxymethylene derivatives 2, was used in the next step without further purification.

\((9E)\pm\{(9E)\pm\{9E\}}\) the ethylene dithioacetate \((9.9 \text{ mmol})\).

To a solution of urethane 2 (217 mg, 0.78 mmol), trimethylene dithioacetate (324 mg, 0.78 mmol), and anhydrous potassium acetate (260 mg) in anhydrous ethanol (3.9 ml) was refluxed for 3 h under argon. After cooling, the solvent was removed under vacuum, and the residue was partitioned between cold 2 mol \( \text{L}^{-1} \) NaOH and chloroform.

The organic layer was washed with brine, dried (MgSO\(_4\)), and evaporated. The residue was purified by flash chromatography using benzene as the eluent to afford 3 (192 mg, 70\% yield) as colourless prisms: mp 130–131 °C (hexanes); \( R_I = 0.26 \) (benzene); \( \text{m.r.} (\text{KBr})/\text{cm}^{-1} 1715, 1520, 737, \delta_{(\text{CDCl}_3)} 5.64 \text{ (m, 1 H)}, 5.61 \text{ (q, 1 H, J 6.8)}, 4.79 \text{ (s, NH)}, 4.27 \text{ (d, 1 H, J 15.4)}, 3.67 \text{ (m, 4 H)}, 3.56 \text{ (d, 1 H, J 13.4 and 2.9)}, 2.62–2.60 \text{ (m, 3 H)}, 2.47–2.30 \text{ (m, 3 H)}, 2.08 \text{ (m, 1 H)}, 1.82 \text{ (d, 3 H, J 6.8)}, 1.75 \text{ (m, 1 H), 1.64} \text{ (s, 3 H)}, \delta_{(\text{CDCl}_3)} 13.7, 22.7, 24.7, 27.6, 28.1, 44.0, 48.1, 48.2, 52.0, 57.8, 60.1, 116.3, 120.3, 131.9, 135.1, 151.1, 151.2; \( m/z 203 \) (5%, \( M^+ \)), 149 (100%). [Calc. for \( \text{C}_{22}\text{H}_{22}\text{NO}_2\text{S}_2 \): \( \text{C} 57.77; \text{H} 6.56; \text{N} 12.60 \) (Found: \( \text{C} 59.62; \text{H} 6.38; \text{N} 12.68% \)].

The residue was used in the next step without purification.

7,8-Dihydro-2-methoxyquinazolin-6(5H)-one 8 A solution of ketal 7 (103 mg, 0.46 mmol) in acetonitrile (1 ml) and 5% \( \text{HCl} \) (1.17 ml) was heated at reflux under argon for 3 h. After cooling, the mixture was evaporated, neutralized and extracted with ethyl acetate. The organic layers were washed with brine and dried (MgSO\(_4\)). Evaporation and flash chromatography of the residue (30\% chloroform in ethyl acetate) gave 74 mg (91\%) of ketone 8 as a yellowish solid: mp 84–85 °C (10% chloroform in hexanes); \( R_I = 0.31 \) (30% chloroform in ethyl acetate); \( \text{m.r.} (\text{KBr})/\text{cm}^{-1} 1718, 1589, 1574, 1379, 794, \delta_{(\text{CDCl}_3)} 8.25 \text{ (s, 1 H)}, 4.01 \text{ (s, 3 H)}, 3.53 \text{ (s, 2 H)}, 3.17 \text{ (app. t, 2 H, J 7.2)}, 2.67 \text{ (app. t, 2 H, J 7.3)}, \delta_{(\text{CDCl}_3)} 30.7, 37.1, 39.6, 54.9, 119.3, 128 (br), 157.9, 164.7, 167.4; \( m/z 178 \) (20%, \( M^+ \)). 163, 135, 120, 107.

5,6,7,8-Tetrahydro-2-methoxy-6-oxoquinoline-5-carboxylic acid methyl ester 9 BuLi (1.15 ml, 1.6 mol \( \text{L}^{-1} \) in hexanes) was added to a stirred solution of diisopropylamine (236 ml, 2.4 mmol) in anhydrous THF (5 ml) at –20 °C under argon. After 30 min, the temperature was lowered to –78 °C, a solution of ketone 8 (356 mg, 2.2 mmol) in anhydrous THF (3 ml) was added, and then stirring was continued at –78 °C for 30 min. The solution was cooled again to –78 °C, and HMBA (204 ml, 2.4 mmol) was added, followed by methyl cyanoformate (204 mg, 2.4 mmol). After 1.5 h at 0 °C, the mixture was poured into cold water (15 ml), and the product was extracted with ethyl acetate, dried (MgSO\(_4\)), and concentrated. Flash chromatography of the residue using 30% chloroform in hexanes as the eluent gave 303 mg (64\%) of 9 as a yellowish solid. This product proved to be stable only if stored in the freezer: mp 72–73 °C (hexanes); \( R_I = 0.51 \) (30% chloroform in hexanes); \( \text{m.r.} (\text{KBr})/\text{cm}^{-1} 2953, 1655, 1585, 1471, 1246, \delta_{(\text{CDCl}_3)} 12.32 \text{ (s, 1 H)}, 8.74 \text{ (s, 3 H)}, 3.97 \text{ (s, 2 H)}, 3.91 \text{ (s, 3 H)}, 2.93 \text{ (app. t, 2 H, J 6.5)}, 2.65 \text{ (app. t, 2 H, J 7.4)}, \delta_{(\text{CDCl}_3)} 29.0, 29.6, 52.0, 54.6, 95.9, 118.9, 151.4, 162.8, 164.8, 171.4, 176.6 (Calc. for \( \text{C}_{11}\text{H}_{13}\text{NO}_2\text{S} \): \( \text{C} 55.93; \text{H} 5.12; \text{N} 11.86 \). Found: \( \text{C} 56.03; \text{H} 5.21; \text{N} 11.83% \)).

(\pm)-7,8,9,10-Tetrahydro-2-methoxy-7-methylene-11-oxo-5,9- methanocycloocta[d]pyrimidine-5(6H)-carboxylic acid methyl ester 10 Palladium diacetate (51.2 mg, 0.21 mmol) and triphenylphosphate (239 mg, 0.91 mmol) were stirred at room temp. in dry dioxane (23 ml under argon for 30 min. A solution of the \( \beta \)-keto ester 9 (1.08 g, 4.56 mmol), DBU (0.95 ml, 6.43 mmol), and 2-methylenepropane-1,3-diol diacetic (0.73 ml, 4.56 mmol) in dry dioxane (7.7 ml) was then added dropwise to the palladium complex over a period of 10 min. After stirring for 20 min at room temp. a solution of DBU (0.48 ml, 3.24 mmol) in dry dioxane (3 ml) was added dropwise. After an additional 20 min, the mixture was refluxed for 3.5 h. Concentration and flash chromatography of the residue using 20% ethyl acetate in hexanes as the eluent gave 1.0 g (76\%) of the methylene-bridged adduct 10 as a colourless oil: \( R_I = 0.39 \) (20% ethyl acetate in hexanes); \( \text{m.r.} (\text{neat})/\text{cm}^{-1} 2955, 1747, 1739, 1589, 1257, 734, \delta_{(\text{CDCl}_3)} 8.00 \text{ (s, 1 H)}, 4.91 \text{ (m, 1 H)}, 4.58 \text{ (m, 1 H)}, 3.99 \text{ (s, 3 H)}, 3.84 \text{ (s, 3 H)}, 3.41 \text{ (dd, 1 H, J 19.0, 6.7)}, 3.25 \text{ (d, 1
(±)-9,10-Dihydro-2-methoxy-7-methyl-11-oxo-5,9-methanoxyclocta[d]pyrimidine-(5/6f)-carboxylic acid methyl ester 11

The β-keto ester 9 (500 mg, 2.11 mmol) was stirred with methacrolein (0.35 ml, 4.22 mmol) and N,N-dimethyl(3-1,3,3-trimethyl-3,4,5,6-tetrahydro-2-pyridyl)amine (26 µl, 0.211 mmol) in dry CH₂Cl₂ at room temp. for 3 h, diluted with CH₂Cl₂, washed with 5 ml of 5% H₃PO₄, then with brine, and finally saturated aqueous NH₄Cl, dried (MgSO₄), and concentrated. The residue was purified by flash chromatography using 20% EtOAc in hexanes as the eluent to give 886 mg of the benzene analogue 15a (81% yield) as a white solid: mp 81–82 °C (hexanes).

Preparation of the benzene analogue 15a

A mixture of p-lactone 14 (6.5 mg, 0.053 mmol) in dry CH₂Cl₂ (0.2 ml, 0.72 mmol) over 5 min under argon. To a solution of diisopropylamine (0.1 ml, 0.76 mmol) in anhydrous THF (3 ml) cooled to −78 °C, a solution of S-phenyl propanethioate (116 mg, 0.72 mmol) in anhydrous toluene (6 ml) was refluxed for 10 h under argon and then allowed to cool to room temp. The solvent was removed, and the residue was purified by flash chromatography (10% EtOAc in hexanes) to give the E-olefin 17a (41 mg, 91% yield) as a white solid: mp 81–82 °C (hexanes); Rf = 0.42 (5% EtOAc in hexanes); v₉⁻⁻(KBr)/cm⁻¹ 1755, 1599, 760, δ(CDCl₃) 7.28–7.05 (m, 3 H), 6.80 (m, 1 H, J 11.8, 1 H, J 17.2), 6.57 (m, 1 H, J 11.8, 1 H, J 17.2), 6.39 (m, 1 H), 6.26 (d, 1 H, J 17.4), 6.12 (d, 1 H, J 17.4), 5.42 (s, 1 H, J 6.8), 4.55 (m, 1 H, J 6.8), 4.25 (m, 1 H, J 6.8), 3.81 (s, 3 H), 3.63 (m, 1 H), 3.20 (dd, 1 H, J 16.9 and 6.4), 2.87 (d, 1 H, J 14.2), 2.59 (d, 1 H, J 17.1), 2.48 (d, 1 H, J 12.9), 2.40 (m, 1 H, J 12.9), 1.73 (d, 3 H, J 6.9); δ(CDCl₃) 12.7, 31.9, 36.7, 43.0, 49.0, 51.9, 57.8, 112.2, 115.5, 125.9, 126.3, 126.5, 127.9, 135.6, 138.7, 139.3, 143.0, 175.7 (Calc. for C₁₅H₁₆N₂O₄: C, 66.63; H, 5.69; N, 9.79%).

3-Methylxetan-2-one derivative 16b

To a solution of diisopropylamine (0.1 ml, 0.76 mmol) in anhydrous THF (3 ml) cooled to −78 °C was added BuLi (2.5 mol 1⁻¹ in hexanes, 0.28 ml, 0.72 mmol) over 5 min under argon. After 15 min, the ice bath was replaced with dry ice-acetone bath (−78 °C), and a solution of 5-phenyl propanoic acid methyl ester 17b (200 mg, 0.72 mmol) in anhydrous THF (0.5 ml) was added. After 30 min, a solution of the β-keto ester 15b (200 mg, 0.72 mmol) in anhydrous THF (0.5 ml) was added over a period of 30 min. The reaction mixture was stirred at −78 °C for 30 min and then allowed to warm to room temp. over 2 h. A half-saturated NH₄Cl solution (5 ml) was added, and the resulting mixture was partitioned between water and EtOAc. The organic layer was washed with a 10% aqueous K₂CO₃, and brine, dried (MgSO₄) and concentrated. The residue was purified by flash chromatography (10% EtOAc in chloroform) to give 16b (192 mg, 81% yield) as colourless prisms: mp 172–173 °C (EtOAc and hexanes); Rf = 0.44 (10% EtOAc in chloroform); v₉⁻⁻(KBr)/cm⁻¹ 2850, 1815, 1739; δ(CDCl₃) 7.07 (d, 1 H, J 8.8), 6.53 (d, 1 H, J 8.7), 4.69 (m, 1 H, J 4.37 (m, 1 H, 4.26 (q, 1 H, J 7.8), 3.87 (s, 3 H, J 3.84 (s, 3 H, J 3.25 (m, 2 H, J 2.82 (d, 1 H, J 19.0), 2.75 (m, 2 H), 2.32 (d, 1 H, J 13.5 and 1.7), 2.21 (dt, 1 H, J 11.2 and 1.7), 1.34 (d, 3 H, J 7.7); δ(CDCl₃) 9.3, 34.7, 37.0, 38.3, 42.2, 49.5, 52.9, 53.4, 55.4, 61.8, 80.9, 113.5, 123.2, 138.0, 140.0, 151.9, 163.2, 172.6 (Calc. for C₁₄H₁₄NO₂: C, 66.66; H, 6.16; N, 4.08. Found: C, 66.63; H, 5.89; N, 4.16%).

3-(±)-11-Ethyliden-7,8,9,10-tetrahydroxy-2-methoxy-5,9-methanoxyclocta[d]pyrimidine-(5/6f)-carboxylic acid methyl ester 17b

A mixture of β-lactone 16a (100 mg, 0.29 mmol), 230–400 mesh silica gel (150 mg), and anhydrous toluene (6 ml) was refluxed for 45 h under argon and then allowed to cool to room temp. The solvent was removed, and the residue was purified by flash chromatography (30% EtOAc in toluene) to give the olefin 17b (76 mg, 88% yield) as a white solid whose spectroscopic data were identical to those reported previously.δ(CDCl₃) 6.95 (d, 1 H, J 8.4), 6.48 (d, 1 H, J 8.4), 5.18 (q, 1 H, J 6.7), 4.63 (m, 1 H, 4.30 (m, 1 H, 3.86 (s, 3 H, 3.79 (s, 3 H, 3.40 (m, 1 H, 3.14 (dd, 1 H, J 17.8 and 6.6), 2.87 (d, 1 H, J 12.6), 2.78 (d, 1 H, J 17.8), 2.39 (m, 1 H, J 1.73 (d, 3 H, J 6.7).
3-Methyloxetan-2-one derivative 18
To a solution of disopropylamine (0.29 ml, 2.1 mmol) in anhydrous THF (9 ml) cooled to 0 °C was added BuLi (1.6 mol 1⁻¹ in hexanes, 1.18 ml, 1.97 mmol) over 5 min under argon. After 15 min, the ice bath was replaced with a dry ice–acetone bath (−78 °C) and a solution of S-phenyl propanethioate (320 mg, 1.91 mmol) in anhydrous THF (2.2 ml) was added after over a period of 30 min. The reaction mixture was stirred at −78 °C for 30 min and then allowed to warm to room temp. over 2 h. A half-saturated NH₄Cl solution (10 ml) was added, and the resulting mixture was partitioned between water and EtOAc. The organic layer was washed with 10% aqueous K₂CO₃ and brine, dried (MgSO₄) and concentrated. The residue was purified by flash chromatography using 10% EtOAc in chloroform as the eluent to give 18 (545 mg, 84% yield) as colourless prisms: mp 153–154 °C (EtOAc and hexanes); Rₖ = 0.23 (10% EtOAc in chloroform); v_max(KBr)/cm⁻¹ 2860, 1815, 1740; δเฮ(CDCI₃) 8.11 (s, 1 H), 7.47 (m, 1 H), 4.45 (m, 1 H), 3.16 (t, 1 H, J 6.8), 2.38 (m, 3 H), 1.73 (m, 3 H), 0.26 (ethyl acetate); v_max(KBr)/cm⁻¹ 2941, 1694, 1599, 1440, 1377; δヘ(CDCI₃) 8.19 (s, 1 H), 5.53 (q, 1 H, J 6.6), 4.72 (m, 1 H), 4.40 (m, 1 H, 3.97 (s, 3 H), 3.45 (m, 1 H), 3.12 (dd, 1 H, J 18.8 and 6.7), 2.97 (d, 1 H, J 13.0), 2.84 (d, 1 H, J 17.8), 2.45 (m, 1 H), 1.76 (d, 3 H, J 6.8); δヘ(CDCI₃) 12.1, 31.2, 39.2, 42.9, 49.1, 54.1, 55.2, 112.7, 116.4, 128.3, 137.8, 143.2, 158.2, 163.1, 167.0, 170.2; m/z 243 (100%, M⁺). Found: C, 67.98; H, 6.71; N, 9.38%.

(11E)-(-) -11-Ethylidene-7,8,9,10-tetrahydro-2-methoxy-7-methylene-5,9-methanocycloocta[d]pyrimidine-5(6H)-carboxylic acid methyl ester 19
A mixture of the β-lactone 19 (260 mg, 0.75 mmol), 230–400 mesh silica gel (300 mg), and anhydrous toluene (12 ml) was refluxed for 40 h under argon and then allowed to cool to room temp. The solvent was removed, and the residue was purified by flash chromatography (30% EtOAc in toluene) to give the olefin 19 (150 mg, 67% yield) as a white solid: mp 154–156 °C (10% chloroform in hexanes); Rₖ = 0.46 (30% EtOAc in toluene); v_max(KBr)/cm⁻¹ 1750, 1600, 1480, 770; δヘ(CDCI₃) 7.93 (s, 1 H), 5.21 (q, 1 H, J 6.7), 4.70 (m, 1 H), 4.36 (m, 1 H, 3.95 (s, 3 H), 3.38 (s, 3 H), 3.42 (m, 1 H), 3.60 (dd, 1 H, J 19.0 and 6.6), 2.94 (d, 1 H, J 12.7), 2.81 (d, 1 H, J 18.8), 2.39 (m, 3 H, J 1.73 (d, 3 H, J 6.7)); δヘ(CDCI₃) 12.9, 31.2, 39.2, 42.8, 54.5, 54.7, 114.5, 117.1, 126.1, 134.1, 142.1, 157.0, 163.9, 168.0, 170.4; m/z 300 (60%, M⁺), 257, 241 (100%), 213, 173 (Calc. for C₁₇H₁₆N₂O₂; C, 67.82; H, 6.83; N, 9.33%). Found: C, 68.02; H, 6.83; N, 9.83%.

(11E)-(-) -11-Ethylidene-7,8,9,10-tetrahydro-2-methoxy-7-methylene-5,9-methanocycloocta[d]pyrimidine-5(6H)-carboxylic acid 20
Ester 19 (335 mg, 1.11 mmol) was dissolved in 5.2 ml of methanol–THF 2:1, and 2 mol % NaOH (2.22 ml) was added. The mixture was heated at 70 °C under argon for 24 h. After cooling, the solution was adjusted to pH 5–6 with 5% aqueous HCl, and the methanol and THF were evaporated. The aqueous residue was extracted with brine, dried (MgSO₄) and concentrated. The crude product was purified by flash chromatography using ethyl acetate as eluent to give 210 mg (66%) of the acid 20 as colourless prisms: mp 217–218 °C (ethyl acetate and hexanes); Rₖ = 0.26 (ethyl acetate); v_max(KBr)/cm⁻¹ 2941, 1694, 1599, 1440, 1377; δヘ(CDCI₃) 8.19 (s, 1 H), 5.53 (q, 1 H, J 6.6), 4.72 (m, 1 H), 4.40 (m, 1 H, 3.97 (s, 3 H), 3.45 (m, 1 H), 3.12 (dd, 1 H, J 18.8 and 6.7), 2.97 (d, 1 H, J 13.0), 2.84 (d, 1 H, J 17.8), 2.45 (m, 1 H), 1.76 (d, 3 H, J 6.8); δヘ(CDCI₃) 12.16, 31.2, 39.2, 42.9, 49.1, 54.1, 55.2, 112.7, 116.4, 128.3, 137.8, 143.2, 158.2, 163.1, 167.0, 170.2; m/z 243 (116%, M⁺), 241, 149, 84 (100%) (Calc. for C₁₇H₁₆N₂O₂; C, 67.10; H, 6.34; N, 9.78. Found: C, 67.43; H, 6.52; N, 9.66%).
Preparation of pyrimidone from 22
A mixture of pyrimidinone 22 (29 mg, 0.119 mmol), trilluoromethanesulfonic acid (24 μl, 0.23 mmol), and dry dioxane (0.5 ml) was heated at 93 °C in a receiveable tube under argon for 24 h. The solvent was removed, and the residue was partitioned between aqueous NaHCO₃ and 10% methanol in ethyl acetate. The organic phase was washed with brine, dried (MgSO₄) and filtered. Concentration and flash chromatography (15% methanol in chloroform) gave 23 (25 mg) in 86% yield. Spectral data are as given above.

(9E)-1-(6-Benzoxymethylene)-3-methyl-7-oxybicyclo[3.3.1]nonan-3-one 24 and 25
To a slurry of the hydroxymethylene derivative 2 (46 mg, 0.166 mmol) and K₂CO₃ (23 mg, 0.166 mmol) in dry dichloromethane (0.8 ml) was added benzoil chloride (19 pl, 0.142 mmol). The resulting mixture was heated at 80 °C under argon for 24 h. The reaction mixture was filtered, and the filtrate was concentrated to dryness under vacuum. Flash chromatography using 5% hexanes in chloroform as the eluent afforded 54 mg (85%) of the (2)-benzylate ester 24 and 6 mg (9.5%) of the (E)-benzylate ester 25.

(11E)-29-Amino-1-ethylidene-5,8,9,10-tetrahydro-7-methyl-5,9-methanocycloocta[d]pyrimidin-2(1H)-one 27
To a solution of carbamate 26 (64 mg, 0.204 mmol) in dry HMPA (0.5 ml) was added lithium propylmercaptide in HMPA (4.65 ml, 2.32 mmol, 0.5 mol 1 solution) at room temp. under argon. The resulting mixture was heated at 90 °C for 6 h. After cooling to 0 °C, the mixture was treated with water and then extracted with ethyl acetate. The organic layers were washed with brine, dried (MgSO₄) and concentrated. The residue was purified by flash chromatography using 20% methanol in chloroform as the eluent to afford 40 mg (81%) of 27 as a white solid: mp 175 °C (decomp.); Rf = 0.46 (20% methanol in chloroform); m/z 299.1478. Found

(10E)-29-Amino-1-ethylidene-4,7,9-tetrahydro-6-methyl-4,8-methanocycloocta[c]pyrazolo[8,5-]carbimic acid methyl ester 29
To a solution of the hydroxymethylene derivative 2 (90 mg, 0.325 mmol) in ethanol (0.32 ml) was slowly added Ni₂H₄·H₂O (16 μl, 0.325 mmol), and the mixture was stirred at room temp. for 1 h. The solvent was removed, and the residue was purified by flash chromatography (1:1:1 chloroform–ethyl acetate–hexanes) to afford the pyrazole 29 in 85% yield (75 mg) as colourless crystals: mp 129–131 °C (from hexanes and ethyl acetate); Rf = 0.31 (1:1:1 chloroform–ethyl acetate–hexanes); m/z 273 (8%; M⁺), 226, 198 (100%), 183, 156 (Calc. for C₁₃H₁₈N₂O₂ M, 273.1478. Found M, 273.1469. Calc. for C₁₃H₁₈N₂O₂ C: 65.90; H: 7.01; N: 15.38. Calc. for C₁₃H₁₈N₂O₂: C: 65.61; H: 6.64; N: 13.08%).

(10E)-29-Amino-1-ethylidene-4,7,9-tetrahydro-6-methyl-4,8-methanocycloocta[c]pyrazolo[8,5-]carbimic acid methyl ester 30
To a solution of carbamate 29 (21 mg, 0.076 mmol) in dry
HMPA (0.5 ml) was added lithium propylmercaptide in HMPA (0.8 ml, 0.4 mmol, 0.5 mol l−1 solution) at room temp. under argon. The resulting mixture was stirred at room temp. under argon for 24 h. After cooling to 0 °C, the mixture was treated with water and then extracted with ethyl acetate. The organic layers were washed with brine, dried (MgSO4) and concentrated. The residue was purified by flash chromatography using ethyl acetate. Purification by flash chromatography using 15% HMPA (0.5 ml) was added lithium propylmercaptide in HMPA (22% methanol in chloroform) to afford as colourless prisms: mp 91-92 °C (from methanol; 31% yield). Calc. for C13H17N3: C, 72.51; H, 7.96; N, 19.53. Found: C, 72.59; H, 7.96; N, 19.50%.

Determination of AChE inhibitory activity

For experimental details of the inhibition of rat cortex AChE, see reference 15; for experimental details regarding the inhibition of FBS AChE, see references 25–27.

Acknowledgements

We are indebted to the National Institute on Aging and MURST-Roma (Italy) for support of our research program. We thank Dr Michael McKinney of the Mayo Clinic Jacksonville for determining the IC50 values for compounds 30 and 31.

References

18 Spectral data for 1b: v(KBr)/cm−1 1724 and 1490; δ(CDC13) 8.32 (s, 1 H), 4.81 (m, 1 H), 4.72 (m, 1 H), 4.07 (d, 1 H, J 12.1 and 4.4), 3.98 (s, 3 H), 3.78 (s, 3 H), 3.12 (m, 2 H), 2.83 (dd, 1 H, J 13.4 and 4.1), 2.72 (m, 1 H), 2.60 (m, 1 H), 3.48 (t, 1 H, J 13.0) and 2.20 (m, 1 H); δ(CDC13) 35.6, 37.0, 42.0, 44.3, 46.6, 52.5, 54.9, 118.6, 124.9, 142.2, 156.8, 164.4, 168.7, 172.6 and 178.4 (found: m/z 306, 1211). Calc. for C13H14N2O3: 306, 1211.