Dielectric permittivity diagnostics as a tool for cultural heritage preservation: Application on degradable globigerina limestone

Andrea Cataldoa, Egidio De Benedettoa,\textasteriskcentered, Giuseppe Cannazzaa, Sebastiano D’Amicob, Lourdes Farrugiab, Geraldine Mifsudb, Evan Dimechb, Charles V. Sammutb, Raffaele Persicoc,d, Giovanni Leuccic, Lara De Giorgic

a University of Salento - Department of Engineering for Innovation, Complesso Ecotekne – Corpo O, 73100 Lecce, Italy
b University of Malta – Department of Geosciences, Msida, Malta
c National Research Council-Institute for Archaeological and Monumental Heritage (CNR-IBAM), Prov.le Lecce-Montaroni, 73100 Lecce, Italy
d International Telematic University Uninettuno UTIU, Corso Vittorio Emanuele 39, 00186 Roma, Italy

\textbf{ARTICLE INFO}

Keywords:
Cultural Heritage
Dielectric permittivity
Moisture content measurements
Globigerina
Time domain reflectometry

\textbf{ABSTRACT}

Most monuments and historical buildings in the Maltese Islands are made of the local Globigerina Limestone (GL). This type of stone, however, is very delicate and prone to degradation caused by the environmental conditions of the islands. Hence, for the preservation of the Cultural Heritage monuments, it is necessary to promptly assess the health status of these structures and, in particular, their water content (which represents one of the major causes of degradation).

Starting from these considerations, in this work, a time domain reflectometry (TDR)-based method for estimating water content of GL is presented. More specifically, the proposed method relies on estimating the water content value of the GL structure from TDR-based dielectric permittivity measurements. To verify the suitability of this system, experimental tests were carried out on a GL sample. In addition to this, also the dielectric characterization of GL was carried out. The results anticipate the strong potential of the proposed method for practical applications in the Cultural Heritage diagnostics.

\section{1. Introduction}

The Maltese Islands are mostly composed of sedimentary rocks, such as the Coralline Limestone and Globigerina Limestone (GL), which have been used since prehistoric times for the construction of buildings and monuments [1]. Unfortunately, stones used in sculpture and architecture, as well as rocks in their original location, are exposed to environmental weathering. This results in modifications of the micro-structure of the stones (such as open porosity, chemical-mineralogical composition of the phases, etc.), which, in turn, lead to changes of the mechanical properties [2].

This is particularly true for GL, which is highly porous and is typically used both in modern and historical architecture. Due to Malta’s marine environment, salt crystallization in the stone’s pores spaces (especially through alveolar weathering) is one of the major causes of damage in many buildings made of GL [3]. In addition to this, also rain and the presence of moisture is another major deterioration cause.

As a result, the study of water absorption characteristics of GL (which are fundamental when durability is being considered) has attracted much research interest [4].

It is well known that the dielectric characterization of a material represents a useful solution for assessing water content. Nevertheless, in the literature, little information is available on the dielectric characteristics of GL.

Starting from these considerations, in this work, a time domain reflectometry (TDR)-based method for estimating water content of GL is presented. The proposed method relies on estimating the GL’s water content value from TDR-based dielectric permittivity measurements. To verify the suitability of this system, experimental tests were carried out on a GL sample both to investigate the dielectric characteristics of GL and to establish an empirical relationship between water content of the stone and dielectric permittivity. In practical applications, by measuring the dielectric permittivity of the structure, it would be possible to retrieve the corresponding water content. As reported in the following, the obtained results anticipate the strong potential of the proposed method for practical applications in the Cultural Heritage diagnostics.
2. Background

TDR is a very flexible measurement technique, and thanks to its adaptability, it is employed for a number of applications, such as moisture content measurements of soils [5–8] and of granular materials in general [9,10]; for the characterization of electrical components [11]; for the leak localization in underground water pipes [12,13]; for dielectric permittivity measurements [14]; for liquid-level monitoring [15–17]; for wire faults localization [18–21]; for monitoring building structures and rising damp [22–26]; and, possibly, also for investigating magnetic properties [27].

The typical instrumental setup for TDR-based in situ water content measurements includes (i) a portable reflectometer; and (ii) a probe (in addition to a laptop for data processing).

In TDR measurements, an appropriate electromagnetic test signal (typically, a voltage step signal with very fast rise-time or a pulse-signal) is propagated along a probe, which is inserted into or placed in contact with the material under test. Any impedance variation causes the partial reflection of the propagating test signal. The reflected signal carries information on the dielectric characteristics of the material in which the probe is inserted. Therefore, through a suitable data-processing of the reflected signal, it is possible to retrieve other intrinsic (qualitative and quantitative) characteristics of the material under test.

The direct output of a TDR measurement is a reflectogram, which displays the reflection coefficient (\(\rho\)) as a function of the apparent distance, \(d_{\text{app}}\). The behavior of \(\rho\) is strictly associated with the impedance variations encountered by test signal as it propagates along the probe. The quantity \(d_{\text{app}}\) can be considered as the equivalent physical distance that would be travelled by the electromagnetic test signal, in the same time interval, if the signal were propagating at the speed of light in vacuum, \(c \approx 3 \times 10^8\) m/s. The quantity \(d_{\text{app}}\) is related to the ‘actual’ physical length traveled by the test signal, \(d\), through the following equation:

\[
d_{\text{app}} = \sqrt{\frac{\rho}{\rho - 1}} \cdot d,
\]

where \(\rho_{\text{app}}\) is the apparent relative dielectric permittivity of the material in which the probe is inserted.

In practice, to evaluate the dielectric characteristics of materials, the apparent length of the probe is measured from the reflectogram, and the corresponding \(\epsilon_{\text{app}}\) is retrieved.

As for TDR-based water content measurements, they rely on the fact that the relative dielectric permittivity of water (approximately 78 at 1.8 GHz (25°C) [28]) is considerably higher than the typical relative permittivity of many dry stones. Therefore, the presence of water leads to a considerable increase of the overall dielectric permittivity of the moist stone.

On such bases, different methods can be adopted for retrieving the water content value, \(\theta\), from TDR measurements. A simple and adequately accurate approach for deriving the functional relationship between \(\theta\) and \(\epsilon_{\text{app}}\) relies on the use of empirical, material-specific calibration curves. These are derived by moistening the stone to a reference (known) water content value, and then measuring the corresponding \(\epsilon_{\text{app}}\) values. The measured \(\theta - \epsilon_{\text{app}}\) points are then fitted and the obtained curve is used as calibration curve. For successive water content measurements on the same material, it suffices to measure \(\epsilon_{\text{app}}\) and the corresponding (unknown) \(\theta\) value is retrieved from the calibration curve.

3. Material and methods

3.1. Material and instrumental setup

GL is a very highly porous limestone, mainly composed of calcite crystals and fossils, including globigerinæ, shells and sea urchins (it may also contain small quantities of quartz, feldspars and clays). GL has fine grains, bonded by carbonatic cement, which however does not completely fill the pores [2]. As reported in [29], understanding the deterioration mechanisms of Globigerina Limestone permits criteria for proper conservation treatment to be established. In the experimental tests reported in this work, a GL sample with dimensions 11.5 cm \(\times\) 5.5 cm \(\times\) 4.5 cm was used.

TDR measurements were performed through the Campbell Scientific TDR100 instrument, which is a low-cost portable TDR unit. The test signal is a step-like voltage signal with rise time of approximately 200 ps and amplitude of 250 mV [30]. One of the advantages of this TDR instrument is that it supports multiplexers, thus allowing the simultaneous connection of several probes to a single TDR unit. This feature is particularly useful for practical purposes, as it can lower the implementation costs.

For the TDR measurements, a two-rod probe fabricated in-house was used. The length of the probe was approximately \(L^2 = 9.5\) cm. Each rod was made of brass and its diameter was 5 mm, while the mutual distance between the rods was 15 mm (Fig. 1). These dimensions were chosen in order to accommodate the probe into the sample. The probe head, which provided mechanical stability, was made in PVC. Inside the probe head there is the electric transition from a bifilar transmission line (represented by the two rods) into a coaxial transmission line (for the connection to the TDR instrument).

TDR measurements were carried out by drilling two holes in the GL sample block. The dimensions and mutual distance between the holes were such the probe could be inserted and could be adherent to the material.

Moreover, experimental characterization of the dielectric properties of GL was also conducted under controlled conditions in the laboratory using a transmission measurement technique. Samples of GL were obtained from various boreholes around Malta and measured using a rectangular waveguide (R-band) which enabled measurements from 1.7 to 2.6 GHz. GL samples were cut to exactly fit the rectangular waveguide section of dimensions 109.2 mm \(\times\) 54.61 mm \(\times\) 40.67 mm. The reflection and transmission coefficients were measured using a vector network analyzer (Rohde & Schwarz, ZVA-50), as shown in Fig. 2. The measurement system was calibrated prior to the measurements using a Thru, Reflect and Line calibration kit. The measured reflection and transmission coefficients were then converted into the corresponding permittivity values using the NIST method [31] and to the permeability values using the Nicholson-Ross Weir method.

3.2. Methods

The procedure used to fully saturate the samples with water and then dry them completely is outlined in Fig. 3 a and b, respectively and the method used is based on the standard BS 1377 Part 2: 1990 [32]. Initially the weight of samples was recorded and then submerged in distilled de-aired water. Samples were left under vacuum for 24 h. Following that, the weight and temperature of the samples was recorded and then immediately transferred in the waveguide section to
conduct dielectric measurements. This procedure was repeated until variations less than 1 g in sample weight were observed. Following the saturation procedure, the samples were left to dry for 12 h in the oven at 105 °C, after which the weight, temperature and dielectric properties were measured. Samples were then left to cool for two hours in a desiccator until the dielectric measurements were recorded at room temperature. The samples were put through another two cycles of 12 and 24 h in the oven until variations of less than 1 g in the dried sample weight was observed.

Starting from the water-saturated condition, the GL sample was let to dry in air. Approximately every three hours, the weight of the sample, \(W_i \), was measured. The corresponding volume of water, \(V_i^{\text{wat}} \), was evaluated as

\[
V_i^{\text{wat}} = \frac{W_i - W_{\text{dry}}}{\delta}
\]

where \(\delta \approx 1 \text{ kg/dm}^3 \) is the density of water.

Hence, for each \(i \)-th moistening condition, the reference water content value was evaluated as

\[
\theta_i^{\text{ref}} = \frac{V_i^{\text{wat}}}{V_{\text{stone}}^{\text{ref}}}
\]

where \(V_{\text{stone}}^{\text{ref}} \) is the total volume of the stone sample.

In the drying procedure, a total of 22 water content values were obtained, starting from \(\theta_1^{\text{ref}} = 23.3\% \) to \(\theta_{22}^{\text{ref}} = 0.0\% \). For each value of \(\theta_i^{\text{ref}} \), the corresponding apparent dielectric permittivity of the stone sample was evaluated through TDR measurements.

A similar procedure of drying and saturation of GL samples obtained from boreholes was done. This enabled dielectric measurements of dry and water-saturated GL which resulted in a range of permittivity values obtained under controlled conditions in the laboratory. The procedure followed for drying and saturating the samples is described in Fig. 3.

Fig. 2. The samples and measurement setup used to measure the permittivity of GL in the laboratory.

Fig. 3. The procedure followed for (a) drying and (b) water-saturating the samples for the dielectric measurements in the laboratory.
4. Experimental Results

Fig. 4 shows one of the acquired reflectograms in the different water content conditions (in particular, the figure shows 22 reflectograms, each referring to a different value of θ_{i}^{ref}). As expected from (1), as the sample dried up, the apparent length of the probe decreased.

For each θ_{i}^{ref} value ($i = 1, ..., 22$), the apparent dielectric permittivity was evaluated as follows. Ten repeated TDR measurements ($j = 1, ..., 10$) were carried out. For each of the ten reflectograms, the corresponding first derivative was evaluated, and the $L_{i,j}^{\text{P,app}}$ value was determined from the peaks of the first derivative[10], as shown in Fig. 5. This figure shows one of the ten repetitions carried out for $\theta_{1}^{\text{ref}} = 23.3\%$ and for $\theta_{22}^{\text{ref}} = 0\%$, respectively. The first derivatives are also reported.

Finally, for each θ_{i}^{ref} value, the ten evaluated values of $L_{i,j}^{\text{P,app}}$ were averaged, and the corresponding apparent dielectric permittivity was evaluated by rearranging (1):

$$\varepsilon_{i}^{\text{app}} = \left(\frac{1}{10} \sum_{j=1}^{10} \frac{L_{i,j}^{\text{P,app}}}{L_{j}} \right)^{2}$$

(4)

The obtained $\theta_{i}^{\text{ref}} - \varepsilon_{i}^{\text{app}}$ points are plotted in Fig. 6, to retrieve the calibration curve. Results show that the value of the dielectric constant varies from approximately 4.3 (in dry condition) to 13.0 (in water-saturated condition). Hence, in practical diagnostics on Cultural Heritage structures, dielectric permittivity measurements can be used to infer the water content of the monitored structure. It should be mentioned that, in this work, a two-rod probe was used to better characterize the dielectric permittivity of GL. However, in practical diagnostics on Cultural Heritage structures, a noninvasive probe (such as a patch antenna) may be used to guarantee noninvasiveness of the system.

The averaged value of the measured permittivity for both dry and saturated state of all the samples within each borehole as obtained from measurements in the laboratory, at frequencies 1.7–2.6 GHz, are presented in Fig. 7. In particular, at 2 GHz, the average permittivity of GL in the dry state resulted to be 5.025 ± 0.065. In the saturated state at 2 GHz, the average permittivity of GL resulted to be 8.396 ± 0.072.

5. Conclusion

In this work, a TDR-based method for estimating water content of GL was presented. More specifically, the proposed method relies on estimating the water content value of the GL structure from TDR-based dielectric permittivity measurements. To verify the suitability of this system, experimental tests were carried out on a GL sample. The obtained results anticipate the strong potential of the proposed method for practical applications in the Cultural Heritage diagnostics.

The advantage of employing TDR is that the necessary instrumentation is low cost, easy to use and portable. It should be mentioned that, in this work, a two-rod probe was used to better characterize the dielectric permittivity of GL. However, in practical diagnostics on Cultural Heritage structures, a noninvasive probe (such as a patch antenna) may be used to guarantee noninvasiveness of the system.
Fig. 7. The average dielectric permittivity of GL samples as obtained from each borehole, at a R-band frequency, for the (a) dry state and (b) saturated state, together with the minimum and maximum values recorded for each borehole.

References
