Linker variation and structure-activity relationship analyses of carboxylic acid-based small molecule STAT3 inhibitors

Francisco Lopez-Tapia, Christine Brotherton-Pleiss, Peibin Yue, Heide Murakami, Ana Carolina Costa Araujo, Bruna Reis dos Santos, Erin Ichinotsubo, Anna Rabkin, Raj Shah, Megan Lantz, Suzie Chen, Marcus A. Tius, and James Turkson

ACS Med. Chem. Lett., Just Accepted Manuscript • DOI: 10.1021/acsmedchemlett.7b00544 • Publication Date (Web): 16 Feb 2018

Just Accepted

“Just Accepted” manuscripts have been peer-reviewed and accepted for publication. They are posted online prior to technical editing, formatting for publication and author proofing. The American Chemical Society provides “Just Accepted” as a service to the research community to expedite the dissemination of scientific material as soon as possible after acceptance. “Just Accepted” manuscripts appear in full in PDF format accompanied by an HTML abstract. “Just Accepted” manuscripts have been fully peer reviewed, but should not be considered the official version of record. They are citable by the Digital Object Identifier (DOI®). “Just Accepted” is an optional service offered to authors. Therefore, the “Just Accepted” Web site may not include all articles that will be published in the journal. After a manuscript is technically edited and formatted, it will be removed from the “Just Accepted” Web site and published as an ASAP article. Note that technical editing may introduce minor changes to the manuscript text and/or graphics which could affect content, and all legal disclaimers and ethical guidelines that apply to the journal pertain. ACS cannot be held responsible for errors or consequences arising from the use of information contained in these “Just Accepted” manuscripts.
Linker variation and structure-activity relationship analyses of carboxylic acid-based small molecule STAT3 inhibitors.

Francisco Lopez-Tabia, Christine Brotherton-Pleiss, Peibin Yue, Heide Murakami, Carolina Costa Araujo, Bruna Reis dos Santos, Erin Ichinotsubo, Anna Rabkin, Raj Shah, Megan Lantz, Suzie Chen, Marcus A. Tius, and James Turkson.

1Cancer Biology Program, University of Hawaii Cancer Center, University of Hawaii, Manoa, Honolulu, HI, USA 96813, 2Department of Chemistry, University of Hawaii, Manoa, Honolulu, HI, USA 96825, 3Susan Lehman Cullman Laboratory for Cancer Research, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, NJ, USA 0885.

KEYWORDS STAT, signal transducer and activator of transcription; BP-1-102, SH5-07, SH4-54, small-molecule inhibitors; breast cancer, melanoma, antitumor cell effects.

ABSTRACT: The molecular determinants for the activities of the reported benzoic acid (SH4-54), salicylic acid (BP-1-102), and benzohydroxamic acid (SH5-07)-based STAT3 inhibitors were investigated to design optimized analogs. All three leads are based on an N-methylglycinamide scaffold, with its two amine groups condensed with three different functionalities. The three functionalities and the CH₂ group of the glycaminamide scaffold were separately modified. The replacement of the pentafluorobenzene or cyclohexylbenzene, or replacing the benzene ring of the aromatic carboxylic acid or hydroxamic acid motif with heterocyclic components (containing nitrogen and oxygen elements) all decreased potency. Notably, the Ala- linker analogs, 1a and 2v, and the Pro-based derivative 5d, all with (R)-configuration at the chiral center, had improved inhibitory activity and selectivity against STAT3 DNA-binding activity in vitro, with IC₅₀ of 3.0 ± 0.9, 1.80 ± 0.94, and 2.4 ± 0.2 µM, respectively. 1a, 2v, 5d, and other analogs inhibited constitutive STAT3 phosphorylation and activation in human breast cancer and melanoma lines, and blocked tumor cell viability, growth, colony formation, and migration in vitro. Pro-based analog, 5h, with a relatively polar tetrahydropyranyl (THP) ring, instead of the cyclohexyl, showed improved permeability. In general, the (R)-configuration Pro-based analogs showed the overall best profile, including physicochemical properties (e.g., microsomal metabolic stability, Caco-2 permeability), and in particular, 5d showed improved tumor-cell specificity.

Signal transducer and activator of transcription (STAT) family of cytoplasmic transcription factors have important roles in many cellular processes, including cell growth and differentiation, inflammation and immune responses. Classically, STAT proteins are activated by tyrosine (Tyr) kinases, such as Janus kinases (JAKs) and Src family kinases, in response to the binding of cytokine and growth factors to their cognate receptors. The Tyr phosphorylation (pTyr) promotes dimerization between two activated STAT:STAT monomers through a reciprocal pTyr-Src homology SH2 domain interactions. Active STAT:STAT dimers translocate to the nucleus to induce gene transcription by binding to specific DNA-response elements in the promoters of target genes.

Aberrant activation of the family member, STAT3, occurs in a wide spectrum of human solid and hematological malignancies and promotes tumorigenesis and cancer progression. The mechanisms of constitutively-active STAT3 in oncogenesis include the dysregulation of gene expression, resulting in uncontrolled cell proliferation and survival, enhanced tumor angiogenesis and metastasis, and the suppression of antitumor immunity. The critical role of STAT3 in cancer progression has made it an attractive target for anticancer drug discovery and anticancer therapy. One of the STAT3 anticancer drug discovery strategies is to target the key pTyr:SH2 domain interaction and hence the STAT3:STAT3 dimerization, thereby modulating STAT3 signaling. A number of small-molecule STAT3 inhibitors have been reported, none of which has gone beyond the preclinical stage because of potency and pharmacokinetic issues, except for OPB31121, although its exact mechanism of action is presently unclear and likely involves the inhibition of Tyr kinases.

We have previously reported on BP-1-102, SH4-54, and SH5-07 as STAT3 dimerization disrupters (structures presented in Supplementary Supplementary Table S6). All three lead compounds are based on the N-methylglycinamide scaffold, with its two amine moieties condensed with three different functionalities. To further improve the potency and physicochemical properties of the lead compounds and to furnish more potent and drug-like analogues, while maintaining selectivity, we took an iterative medicinal chemistry approach. The representative analogs, 1a, 5d and 2v (Fig. 1A) strongly inhibited STAT3 DNA-binding activity in vitro, with an IC₅₀ of 3.0 ± 0.9, 2.4 ± 0.2, and 1.80 ± 0.94 µM, respectively. Substitution of the glycine scaffold: alanine motif shows improved activity in disrupting STAT3 DNA-binding activity in vitro. The structure of the Gly-based initial lead compounds, BP-1-102, SH4-54 and SH5-07, was systematically optimized to simultaneously improve potency and physicochemical properties (e.g., lowering lipophilicity from the initial lead, SH5-07, cLogP of 5.6), while maintaining or lower-
ing molecular weight (MW). In order to optimize the core scaffold of the lead compounds to furnish analogs with improved potency and better physicochemical properties, several groups of the pharmacophore were modified systematically (Supplementary Table S1-S4). Supplementary Table S1 shows substitution at the methylene group of the glycine linker with small alkyl, hydroxyalkyl, aminomethyl or carbomethoxy groups with the goal of improving potency or finding additional binding interactions. The inhibitory activities of the representative analogs against in vitro STAT3 DNA-binding activity, as measured by electrophoretic mobility shift assay (EMSA), are shown in Figure 1. Replacement of the Gly-linker by Ala (X = CHMe) to give the salicylic acid (R)-1a derivative (IC$_{50}$ of 3.0 µM) moderately improved the STAT3-inhibitory activity over the parent compound, BP-1-102 (IC$_{50}$ 6.8 µM) [13] (Fig. 1B(i), Table S1). The corresponding enantiomer (S)-1e gave somewhat lower potency (IC$_{50}$ of 5.0 µM) than its antipode (R)-1a.

Interestingly, contrary to the increase in potency observed with the salicylic acid-based analogs, the replacement of Gly-linker for Ala-linker in the benzoic acid-based and benzohydroxamic acid-based compounds did not improve potency (cf., SH4-54, IC$_{50}$ 4.4 µM with 1c and 1f, IC$_{50}$ 9.3 and 10.0 µM, respectively; and SH5-07, IC$_{50}$ 3.9 µM, with 1d and 1g, IC$_{50}$ 5.3 and 6.8 µM, respectively: Fig. 1B(i), Table S1). Further substitutions at the methylene bridge of the salicylic acid-based BP-1-102 Gly-linker to further probe the SAR, including ethyl (1h-i), bis-methylene to form a cyclopropyl (1j), dimethyl (1l), Ser-based linker (1m-p), hydroxyethyl (1q-r), Thr-based linker (1s-t), aminomethyl (1u-v) and Asp-based linker (1w-x, Table S1), led to compounds with reduced affinity compared to the Ala-linker analogs 1a and 1c (Table S1, Fig. 1B(ii), (iii)). In general the (R)-configuration analogs consistently showed stronger potency compared to that of the corresponding enantiomeric (S)-analogs (Table S1). Based on this observation, therefore, only compounds with the (R)-configuration were considered for further optimization.

Modification of benzoic acid-based analogs aryl ring critical for the STAT3-inhibitory activity of compounds: To further improve the potency of the lead compounds, we focused on optimizing the benzoic acid and benzohydroxamic acid moieties (Table S2). Interestingly, replacing the aromatic system with heterocyclic rings such as pyridine, pyridine-oxide, or oxazole (2b, 2c, 2e, and 2f) all greatly reduced the activity of the new analogs in vitro (Fig. 1D, Table S2). We also noted that isosteric replacement of the standard 4-substituted benzoic acid system with a 3-substituted phenylacetic acid remarkably decreased the activity of the new analog (2d) in vitro (Fig. 1D, Table S2). Similarly, the isodonolone and indazoles (2g, and 2i) also showed much weaker in vitro activity, compared to the parent compound (Fig. 1D, Table S2). In addition, previous results from our lab also showed that the corresponding tetrazole system, instead of the carboxyl group, does not improve the STAT3-inhibitory activity. These data so far suggest that the carboxyl group can only be replaced with the hydroxamic acid moiety if STAT3-inhibitory activity is to be maintained. In addition, we noted that the sodium benzoate analogs (2a, 4c, and 1b) showed slightly decreased activity in inhibiting STAT3 DNA-binding ability in vitro, compared to their free acid forms (SH4-54, 4b, and 1a, respectively) (Fig. 1B(i), 1b, Fig. 1D, 2a, Fig. 1G, 4c).

We next substituted the aromatic ring with methyl, chlorine, or fluorine for SAR evaluation (Table S2). Aromatic methyl substitutions of Gly-linker analogs (2j, 2l, and 2n) significantly reduced the ability to disrupt STAT3 DNA-binding activity in vitro, compared to the lead compound, SH4-54 (Fig. 1E(i), Table S2). However, their corresponding Ala analogs (2k, 2m, and 2o) showed comparable (2k and 2m, IC$_{50}$ of 5.7, 6.6, respectively) or slightly improved (2o, IC$_{50}$ 4.2 µM) in vitro STAT3-inhibitory activity compared to the lead compound, SH4-54 (IC$_{50}$ 4.4 µM) (Fig. 1E(i), Table S2). The ortho-meta-substitution with chlorine decreased the in vitro activity of the new analogs (2p and 2s, IC$_{50}$ 8.6-14.4 µM) (Fig. 1E(ii), Table S2), compared to SH4-54, whereas their corresponding Ala analogs (2q and 2t, IC$_{50}$ 4.1 and 3.6 µM, respectively), and the benzohydroxamic analog of 2q (2r, IC$_{50}$ 3.5 µM), showed moderately improved activity, compared to the parental lead compound (Fig. 1E(ii), Table S2). Notably, contrary to chlorine, a single fluorine substitution at the 3-position (2v, IC$_{50}$ 1.8 µM) led to a two-fold improvement in potency against STAT3 activity in vitro (Fig. 1E(iii), Table S2). Similar substitution of a fluorine at the 3-position of the indazole also led to improvement (Table S2, entry 26 vs. entry 9). By contrast, other fluorine replacements, including substitution at the 2-position or 3,5-positions (2y and 2x), showed no improvement in activity compared to SH4-54 (Fig. 1E(iii), Table S2).

Substitutions on pentafluorobenzene or cyclohexylbenzyl group decrease the potency of analogs in vitro. We have previously reported that the replacement of the 4-toluenesulfonamide moiety of S31-201.1066 with pentafluorobenzensulfonamide generated the first orally bioavailable small-molecule inhibitor of STAT3, BP1-102, which substantially improved the STAT3-inhibitory potency in vitro (IC$_{50}$ of 6.8 µM) over the parental compound (IC$_{50}$ of 35 µM). Our new strategy focused on the pentafluorobenzene ring for SAR evaluation (Table S3) and for addressing whether this motif is critical for the potency of the lead compounds. Interestingly, reducing the number of fluorine atoms in a variety of different ways on the aromatic ring (analogs 3a, 3b, 3c, 3d and 3e), or replacing the pentafluorophenyl group with 3,5-bis(trifluoromethyl)phenyl or pyridyl (3f, and 3g) all significantly suppressed the activity of the new analogs against STAT3 DNA-binding activity in vitro (IC$_{50}$ higher than 26 µM) (Fig. 1F, Table S3). In order SAR studies, the sulfonamide linker was replaced with an amide or a methylene. However, the modifications of the pentafluorobenzensulfonamide group to a pentafluorobenzamid e or a pentafluorobenzylamide were similarly not tolerated (3h-i, Table S3).

In our previous study, the incorporation of the (4-cyclohexyl)benzoyl moiety into the compound S31-201 generated S31-201.1066, which showed a 3-fold improvement in activity, with an IC$_{50}$ of 35 µM. This important substructure is also incorporated in the three lead compounds (BP1-102, SH4-54, and SH5-07). In order to improve the physicochemical properties of the scaffold, for example, reduce the hydrophobicity and improve the solubility of the new analogues, we substituted the cyclohexyl group with heterocycles containing oxygen or nitrogen (Table S4). Interestingly, the replacement of cyclohexane by tetrahydro-4H-pyran (THP) (4a, 4c, and 4d) or piperidine (4l, and 4f) decreased the activity of the new analogs (Fig. 1G, Table S4). However, the THP analog, 4b (IC$_{50}$ 5.0 µM, Table S4), which incorporates an Ala-linker, shows a moderately improved potency against STAT3 DNA-binding activity in vitro compared to the parental compound,
BP-1-102 (IC₅₀ 6.9 µM), indicating that the incorporation of alanine can compensate for the loss of activity caused by oxygen substitution in the cyclohexane moiety. Other analogs also designed and prepared include replacing the cyclohexane with cycloheptane (4h), cycloheptane (4j) or 4,4-difluoro-cyclohexane (4g, 4h), or replacing the benzyl system with a pyridylmethyl moiety (4k), but all resulted in compromised STAT3-inhibitory potency. (Fig. 1G, Table S4).

Extension of the alanine SAR: Proline analogs show further activity improvement in disrupting STAT3 DNA-binding in vitro. A further modification to the Ala linker was to join the two methylene groups to become a novel Pro-linker system. Notably, the (R)-enantiomer Pro analog 5d (IC₅₀ of 2.4 µM, Fig. 1C, Table S5) showed 3-fold improvement in potency in inhibiting STAT3 DNA-binding activity in vitro, compared to that of BP-1-102 (IC₅₀ 6.8 µM). Consistent with what was observed before, the (S)-5c showed lower activity than that of the (R)-5d (IC₅₀ of 7.2 µM vs 2.4 µM, respectively) [Fig. 1C]. Interestingly, an isomeric modification of the Pro pyrrolidine ring, such as in compounds 5a and 5b (IC₅₀ 6.5-6.9 µM, Table S5, Fig. 1C), led to lower potency compared to that of the Pro linker 5d (IC₅₀ of 2.4 µM) [Fig. 1C], but similar to that of the original lead compound BP-1-102 (IC₅₀ 6.8 µM). Unlike alanine, the increase in potency seen in the case of the meta-fluorine analog 2v (IC₅₀ 1.8 µM, Table S5 vs SH4-54, IC₅₀ 4.4 µM) was not realized for the Pro-based analog, 5e (IC₅₀ 5.3 µM). Substitution of a chlorine in the 2-position or conversion of the salicylic acid to the benzohydroxamic acid showed no improvement (5k, IC₅₀ 3.8 µM and 5l, IC₅₀ 5.5 µM). In addition, the substitution of the cyclohexyl group of 5d with a THF provided analog 5g (IC₅₀ 5.4 µM, Table S5), which although showed moderately improved potency in disrupting STAT3 DNA-binding activity in vitro when compared to their parent compound, BP-1-102 (IC₅₀ 6.9 µM), it was less potent than 5d. However, further substitutions of the cyclohexane group such as tetrahydrofuran (THF) 5j (IC₅₀ 4.5 µM, Table S5) or a cyclopentane 5i (IC₅₀ 3.6 µM, Table S5) showed promise in the proline series. Select variations of the pentafluorosulfonyl group in the proline series were not tolerated as observed with the alanine series (Table S3, Table S5 entries 13-16).

On selectivity, we note that select analogs disrupt the DNA-binding activities of both STAT3 and STAT5, but not that of STAT1 in vitro (Supplementary Fig. S1). These are discussed in detail in the Supporting Information.

New analogs inhibited constitutive STAT3 activation in cancer cells, with minimal effects on other signaling proteins. Select analogs were investigated for their inhibitory activities against constitutively-active STAT3 in tumor cells. The human breast cancer cells, MDA-MB-231, were treated with 10 µM of 1e or 1a for 1, 3 or 24 h, or the human breast cancer line, MDA-MB-468 was treated with 5 µM of 1a, 2j, 2p, 2k or 2q for 3 or 24 h. Nuclear extracts were prepared and samples of equal total protein were subjected to STAT3 DNA-binding activity/EMSA analysis to determine effects on intracellular STAT3 activity. Results show variable degrees of inhibition of STAT3 activity, which are cell-type dependent. STAT3 DNA-binding activity in MDA-MB-231 cells was inhibited by both 1e and 1a following 3 h treatment, with little change at 1 h treatment (Supplementary Fig S2A(i)). At the 24 h time point, the treatment with 1e, but not with 1a, continued to inhibit STAT3 DNA-binding activity (Supplementary Fig. S2A, 24 h), suggesting the inhibitory effect of 1e is sustained up to 24 h. Moreover, EMSA analysis shows STAT3 DNA-binding activity in MDA-MB-468 cells is inhibited by treatment with 5 µM 1a for 3 or 24 h, 5 µM 2k for 3 h, and with 5 µM 2q for 24 h (Supplementary Fig. S2A(ii)). Other compounds tested (2j, and 2p) showed minimal effect on STAT3 DNA-binding activity in cells (Supplementary Fig. S2A(ii)).

Select analogs were evaluated for their inhibitory effects on pY705STAT3, relative to non-specific effects on pJak2, pSrc, and pERK1/2 induction in the human breast cancer, MDA-MB-231 and MDA-MB-468 cells, and the metastatic melanoma, C8161, 1205LU, and UACC903 cells. Results, which are discussed in detail in the Supporting Information, show that at concentrations that inhibit pY705STAT3 and STAT3 DNA-binding activity (Supplementary Fig. S2), the analogs have little effect on other signaling proteins (Supplementary Fig. S3). Altogether, the new analogs show strong and variable inhibitory effects against constitutive STAT3 DNA-binding activity and Tyr phosphorylation in human tumor cells. The variable responses may reflect the complexities in the STAT3 signaling pathway that impacts small molecule inhibitors in cells. We note that the Ala analogs, 2k and 2q are more potent, compared to their Gly-based counterparts, 2j and 2p.

Novel active analogs decreased the growth, colony formation, and migration of human cancer cells harboring persistently-active STAT3. Constitutive STAT3 activity promotes tumor cell growth and proliferation and survival. We have previously shown that the lead agents, SH4-54 and SH5-07 inhibit human tumor cell growth. We determined the effects of the new active analogs on tumor cells harboring aberrantly-active STAT3. Based on the activity of the compounds in inhibiting STAT3 DNA-binding activity in vitro, we selected potent analogs for further evaluation of their effects on inhibiting tumor cell phenotype. We note the variable responses of the compounds tested against tumor cells harboring constitutively-active STAT3, compared to cells that do not. Treatment with 5d, 2v, 2j, 2p, 2k, and 2q variably inhibited the viability of MDA-MB-231 and MDA-MB-468 cells (Fig. 2A, B). These results are consistent with the previous report on the lead agents. 2v further inhibited MDA-MB-231 cell growth (Supplementary Fig. S4), which is discussed in detail in the Supporting Information. By contrast, 72 h treatment with 5d, 2v, 2j, 2p, 2k, or 2q of MCF-7 cells that do not harbor aberrantly-active STAT3 led to relatively weaker inhibitory effects on cell viability and growth, as measured by CyQuant viability assay (Fig. 2C). Overall, 10 µM concentration of these analogs showed relatively stronger effects on MDA-MB-231 and MDA-MB-468, compared to the generally weak-to-moderate effects on cells (MCF-7) that do not harbor constitutively-active STAT3 (Fig. 2), suggesting preferential effects on STAT3-dependent tumor cells. Intracellular activity overall are moderately improved, which in part reflects the enhancement in physicochemical factors that influence cell membrane permeability, metabolic stability, and hence increased intracellular concentrations. Importantly, the Pro-based analog, 5d, improved tumor-cell specificity and preferentially inhibited the growth of MDA-MB-231 and MDA-MB-468 human breast cancer cells harboring constitutively-active STAT3 over the MCF-7 line that does not.

Moreover, treatment with 1a for 48 h strongly inhibited the viability of human metastatic melanoma C8161, 1205LU, and C81-61 cell lines that harbor constitutively-active STAT3, compared to the relatively weaker activity against the immor-
talized human normal melanocyte, AR7119 line that does not harbor aberrant STAT3 activation (Fig. 2D). We surmise that at concentrations (<10 µM) that inhibit STAT3 activity in tumor cells, the tested compounds showed relative preferential effects against the viability of tumor cells that harbor constitutive STAT3 activation over cells that do not.

Colony survival assay in which single-cell cultures of MDA-MB-231 line were treated once with 0-20 µM 2f, 2p, 2k or 2q and allowed to culture until colonies were visible showed that all four analogs strongly inhibited the formation of colonies at 3 µM, with the minimum effect at 1 µM (Fig. 2E, Supplementary Fig. S4C). In vitro cell migration scratch assay showed that treatment of MDA-MB-231 cells with 8 µM of the analogs variably suppressed cell migration, with the strongest inhibition caused by 2f, 2p and 2q, while 2k had moderate to weak effect (Fig. 2F).

Initial pharmacokinetic evaluation: We were interested in understanding how the physicochemical properties of these compounds influence their pharmacokinetic parameters and initially focused on reducing lipophilicity by introducing heteroatoms at different sites of the pharmacophore structure. For example, replacement of the pentafluorophenyl group with a 3-pyridyl ring (3g, Table S3), replacement of the benzoic acid group with different heterocyclic systems (2b-c, 2e-f, 2z Table S2), or the modification of the cyclohexyl ring to 1- and 4-piperidyl systems (4f, 4l, Table S4) were explored, which all gave weaker in vitro STAT3-inhibitory activity compared to BP-1-102. Although the replacement of the cyclohexyl ring with 4-tetrahydropyranyl (THP) also tended to give compounds with relatively lower activity (4a, 4c-e, Table S4), some other THP analogs gave comparable potency with the parent BP-1-102 (e.g., 4b, IC_{50} 5.0 µM, Table S4 vs BP-1-102, IC_{50} 6.8 µM). This finding was exploited to improve the physicochemical properties of the compounds (vide supra). Preliminary in vitro assessment of aqueous solubility, cell membrane permeability (Caco-2 cells assay), and mouse and human liver microsomal (MLM and HLM) metabolic stability studies were conducted on selected analogs and compared to the lead compounds, SH4-54 and SH5-07 (Table S6).

Results show that solubility in both pH 7.4 PBS and pH 6.8 buffered simulated intestinal fluid (SIF, Table S6) was improved by creating sodium salts, as observed for 1b (127 µg/mL both PBS and SIF), 4c (132 and 127 µg/mL, respectively) and 5h (123 and 117 µg/mL, respectively), compared to the lead agent, SH4-54, which had only limited solubility as a carboxylic acid (7.6 and 14 µg/mL, respectively), possibly as a result of enhanced dissolution rate to the lead agent, SH4-54, which had only limited solubility as a carboxylic acid (7.6 and 14 µg/mL, respectively), possibly as a result of enhanced dissolution rate (vide supra). Preliminary in vitro assessment of aqueous solubility, cell membrane permeability (Caco-2 cells assay), and mouse and human liver microsomal (MLM and HLM) metabolic stability studies were conducted on selected analogs and compared to the lead compounds, SH4-54 and SH5-07 (Table S6).

Results show that solubility in both pH 7.4 PBS and pH 6.8 buffered simulated intestinal fluid (SIF, Table S6) was improved by creating sodium salts, as observed for 1b (127 µg/mL both PBS and SIF), 4c (132 and 127 µg/mL, respectively) and 5h (123 and 117 µg/mL, respectively), compared to the lead agent, SH4-54, which had only limited solubility as a carboxylic acid (7.6 and 14 µg/mL, respectively), possibly as a result of enhanced dissolution rate (vide supra). Preliminary in vitro assessment of aqueous solubility, cell membrane permeability (Caco-2 cells assay), and mouse and human liver microsomal (MLM and HLM) metabolic stability studies were conducted on selected analogs and compared to the lead compounds, SH4-54 and SH5-07 (Table S6).

Ala-based analogs show lower metabolic stability compared to Gly-based compounds (e.g., 1b and 4c RLM/HLM 1± 5min vs SH4-54 and SH5-07 RLM/HLM 1± 7min, Table S6). Hypothesizing that the Ala-based compounds are more prone to metabolic N-demethylation, Pro-linker compounds were designed with the goal to improve metabolic stability and maintain potency. Indeed, the Pro-based analogs 5f (HLM and MLM 1± 54 and 26 min, respectively) and 5h (HLM and MLM 1± 15 and 18 min, respectively) showed much improved microsomal metabolic stability (Table S6).

In summary, Ala-linker analogs, 1a and 2v, and the Pro-based derivative 5d, all with (R)-configuration at the chiral center, had improved inhibitory activity and selectivity against STAT3 DNA-binding activity in vitro, with IC_{50} of 3.0 ± 0.9, 1.80 ± 0.94, and 2.4 ± 0.2 µM, respectively. All three 1a, 2v, and 5d inhibited constitutive STAT3 phosphorylation and activation in human breast cancer and melanoma lines, and blocked tumor cell viability, growth, colony formation, and migration in vitro. However, in general, the (R)-configuration Pro-based analogs showed overall the best profile, including microsomal metabolic stability, Caco-2 permeability, and in particular 5d showed improved tumor-cell specificity preferentially inhibiting the growth of MDA-MB-231 and MDA-MB-468 human breast cancer cells harboring constitutively-active STAT3, with minimal effects at concentrations up to 10 µM on the growth of MCF-7 human breast cancer line that does not harbor persistent STAT3 activity compared to 2v. Additional efforts are currently focused on further optimizing potency and refining the physicochemical properties, thereby further improving the activity and efficacy to ultimately identify suitable STAT3-inhibiting candidates for clinical application.

FIGURES LEGENDS

Figure 1. Structures of 1a, 2v and 5d, and the effects of new analogs on STAT3 DNA-binding activity in vitro. (A) 1a, 2v and 5d; (B-G) EMSA analysis of STAT3 DNA-binding activity in nuclear extracts of equal total protein prepared from v-Src-transformed fibroblasts containing activated STAT3 pre-incubated with 0-100 µM of the indicated compounds for 30 min prior to incubation with the radiolabeled hSIE probe that binds STAT3. Positions of STAT3:DNA complexes in gel are labeled; control lanes (0) represent nuclear extracts pre-treated with 0.05% DMSO. Data are representative of 2-3 independent determinations.

Figure 2. Effects of compounds on cell viability, growth, colony survival and migration in vitro. Human breast cancer MDA-MB-231 (A) and MDA-MB-468 (B) cells harboring aberrantly-active STAT3 or MCF-7 cells that do not (C) growing in 96-well plates were treated once with 0-10 µM of the indicated compounds for 72 h and subjected to CyQuant cell proliferation assay for viable cells, which are plotted as % viability against concentration; (D)
Cultures of melanoma cells harboring aberrantly-active STAT3 (CR161, 1205LU, and CR1-61) and counterpart that does not (AR7119) were treated with 1a or 1c at the indicated concentrations for 72 h and subjected to MTT assay for viable cells, which were plotted as % viability; (E) Human breast cancer MDA-MB-231 cells were seeded as single-cell culture and treated once with 0.3 μM of the indicated compounds and allowed to culture until large colonies were visible, which were stained with crystal violet, counted and plotted; and (F) human breast cancer, MDA-MB-231 cells in culture were wounded and treated once with or without 8 μM of the indicated compounds and allowed to migrate to the denuded area over a 23-h period and imaged. Control (0) represents 0.05% DMSO-treated cells. Values, mean ± S.D. of 3 independent determinations. Data are representative of 3 independent determinations. *p<0.01. **p<0.005. ***p<0.001.

ASSOCIATED CONTENT

Supporting Information

Information on compound synthesis, chemical data, the experimental procedures for nuclear extract preparation, gel shift assay, immunoblotting analysis, cell proliferation, viability assay, and trypan blue exclusion/phase-contrast microscopy, clonogenic survival assay, and the scratch assay is available free of charge on the ACS Publications website.

AUTHOR INFORMATION

Corresponding Author
#Address correspondence to: James Turkson, Professor and Program Director, Cancer Biology Program, University of Hawaii Cancer Center, 701 Ilalo Street, Suite 344, Honolulu, HI 96813, Tel. 808-356-5784, Fax 808-587-0742; Email: jturkson@cc.hawaii.edu

Author Contributions
The manuscript was written through contributions of all authors. / All authors have given approval to the final version of the manuscript. / *These authors contributed equally.

Funding Sources
This work was supported by the NIH/NCI Grant CA161931 (JT), CA208851 (JT), and University of Hawaii start-up funds.

ACKNOWLEDGMENT

We thank all colleagues and members of our laboratory for the stimulating discussions. Part of the services for this work was provided by the Chemical Biology Core, which is supported in part by grant 4P30CA071789 from the NIH/NCI to the University of Hawaii Cancer Center.

ABBREVIATIONS

STAT, signal transducer and activator of transcription; EMSA, electrophoretic mobility shift assay; MAPK, mitogen-activated protein kinase; ERK, extracellular signal-regulated kinases.

REFERENCES

(3) Yue, P.; Turkson, J. Targeting STAT3 in cancer: how successful are we? Expert Opin Investig Drugs. 2009, 18 45.
(5) Turkson, J. STAT proteins as novel targets for cancer drug discovery.

Expert opinion on therapeutic targets 2004, 8, 409.
(22) Klein, S. The use of biorelevant dissolution media to forecast the in vivo performance of a drug. AAPS J 2010 12, 397.
<table>
<thead>
<tr>
<th></th>
<th>STAT3:STAT3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1a</td>
<td></td>
</tr>
<tr>
<td>2v</td>
<td></td>
</tr>
<tr>
<td>5d</td>
<td></td>
</tr>
</tbody>
</table>

Improved potencies of 1a, 2v, and 5d
学霸图书馆

www.xuebalib.com

本文献由“学霸图书馆-文献云下载”收集自网络，仅供学习交流使用。

学霸图书馆（www.xuebalib.com）是一个“整合众多图书馆数据库资源，提供一站式文献检索和下载服务”的24小时在线不限IP图书馆。

图书馆致力于便利、促进学习与科研，提供最强文献下载服务。

图书馆导航：

图书馆首页 文献云下载 图书馆入口 外文数据库大全 疑难文献辅助工具