A solvent extraction process with mixture of CA12 and Cyanex272 for the preparation of high purity yttrium oxide from rare earth ores

Yanliang Wanga,b, Wupering Liaoa, Deqian Lia,*

aState Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China
bGraduate University of the Chinese Academy of Sciences, 19A Yuquanlu, Beijing 100049, PR China

\begin{abstract}
Solvent extraction and separation of yttrium from other rare earths in chloride medium using the mixture of sec-octylphenoxy acetic acid (CA12, HA) and bis(2,4,4-trimethylpentyl) phosphinic acid (Cyanex272, HB) has been investigated. Tri-n-butyl phosphate (TBP) was used as the phase modifier to achieve fast phase separation and to improve the stability of the organic phase. The separation coefficients (\(\beta\)) between yttrium and heavy rare earths (HRE) are more significant in the double solvent (HAB) extraction system than the CA12-TBP extraction system. In a laboratory scale test with a fractional extraction process including 15 stages of extraction section and 10 stages of scrubbing section, yttrium was separated from all the other rare earths with a yield of 95% and an yttrium oxide product with 99.94% purity was obtained.
\end{abstract}

1. Introduction

Yttrium is widely used for cathode ray tube, plasma display panel, light emitting diode, fluorescent lamp and other phosphors \cite{1}. In recent years, the market demands for highly purified yttrium (Y) compounds are significantly increased. The solvent extraction methods with extractants, such as high molecular weight amines and naphthenic acids, are widely used for separation and purification of Y from other rare earths \cite{2–5}. The main advantages of naphthenic acids include low cost and easy preparation. However, some problems gradually emerge for separation process with naphthenic acid during the industrial practice. For example, as the operational pH values for high extraction efficiency are relatively high, unexpected emulsification appears and leads to difficulties in phase separation. The extraction performance is not stable because of the complicated composition of naphthenic acids, which is varied depending on the manufacturer and will change after being used for a long time. More over, the separation of Y from light-group rare earth (LRE) is difficult due to the low separation factors between them \cite{6}.

A carboxylic acid extractant, sec-octylphenoxy acetic acid (CA12), has shown some advantages over the naphthenic acid for rare earth separation. Because the pKa value of naphthenic acid is 7.57 while the pKa of CA12 is 5.35, the pH\textsubscript{1/2} value (the pH value point with 50% metal extraction) of CA12 system is much lower than the naphthenic acid system. The extractability of CA12 for LRE is higher than naphthenic acid with a cation exchange mechanism \cite{7,8}. For example, with CA12 as extractant and iso-octanol as phase modifier, the separation factors (\(\beta\)) between yttrium and other light rare earths are 5.26, 8.29, 10.73, 6.14 and 7.07 for \(\beta_{\text{La}^3+/Y}\), \(\beta_{\text{Ce}^{3+}/Y}\), \(\beta_{\text{Nd}^{3+}/Y}\), \(\beta_{\text{Pr}^{3+}/Y}\) and \(\beta_{\text{Sm}^{3+}/Y}\), respectively. As a comparison, the corresponding \(\beta\) values are 0.91, 1.50, 1.90, 1.60 and 4.0 for the naphthenic acid-isooctanol system \cite{9}. The lower operational pH values of CA12 system decrease the risk of emulsion in the liquid–liquid extraction process. In addition, the composition of CA12 is consistent and stable.

The CA12 system with phase modifiers such as long carbon chain alcohol and TBP has been used for separation of yttrium from the leaching solution of the yttrium-enrichment rare earth deposit in pilot plant scale \cite{9}. \(\text{Y}_2\text{O}_3\) product was obtained with a purity of 99.5% and a yield of 95%. However, the separation efficiency between Y and the heavy-group rare earth elements (HRE) was low. For example, the \(\beta_{\text{Dy}^3+/Y}\) and \(\beta_{\text{Er}^{3+}/Y}\) values are 2.19 and 1.66, respectively, suggesting it is difficult to achieve complete Y and HRE separation in industrial practice. Sun et al \cite{10} found the mixture of CA12 and bis(2,4,4-trimethylpentyl) phosphinic acid (Cyanex272) has synergistic effects on Y and HRE extraction. The largest synergistic coefficient, \(R_{\text{max}}\), was obtained at the mole fraction \(X_{\text{CA12}} = 0.6\).

In order to enhance the separation coefficients between Y and HRE, we developed a novel extraction system called double solvent extraction (or HAB extraction) from an industry point of view. CA12 was taken as the main extractant (HA) for improving the
2. Experimental

2.1. Reagents and apparatus

CA12, P204, P507, TBP, sulfonated kerosene and iso-octanol were kindly provided by Shanghai Rare-earth Chemical Co. Ltd. of China. Cyanex272 was supplied by CYTEC Canada Inc. Molecular structure of CA12 and Cyanex272 are shown in Fig. 1. All extractants were used without further purification under the experiment of fractional extraction. The concentrations of acidic extractants were titrated by standard solution of sodium hydroxide [15]. Mixed rare earth concentrate beneficiated from lon-absorbed-type rare earth (IATRE) minerals was provided by Jiangxi Institute of Rare Earth of China. Feed solution was prepared by leaching the triammonium from Ion-absorbed-type rare earth (IATRE) minerals.

2.2. Solvent extraction process

Extraction equilibrium experiments were carried out by shaking equal volumes (5 mL) of feed solution and organic phase for 30 min in 30 mL separatory funnels at room temperature. Trial of phase equilibrium showed that 10 min were enough for extraction equilibrium. When phase separated, the equilibrium concentration of RE in aqueous phase, [RE]aq, was determined by titration method or ICP-OES. The amount of RE in organic phase, [RE]org, was determined by mass balance. The distribution ratio, D, can be obtained as:

\[D = \frac{[RE]_{\text{org}}}{[RE]_{\text{aq}}} \]

Fractional extraction was carried out by “funnel method” to simulate multistage counter-current extraction in the laboratory.

3. Results and discussion

3.1. The effect of phase modifiers

As a modifier, iso-octanol is commonly added to extraction system of carboxylic acids [17]. However, it is unsuitable to use aliphatic alcohols as modifiers in CA12 system during long term industrial test [18].

In order to determine the effect of phase modifiers on CA12 extraction, a series of CA12 solutions with 0.7 mol/L CA12 and 30% (v/v) alcohols or TBP in kerosene were prepared, placed at room temperature, and then analyzed periodically. As shown in Fig. 2, concentration of CA12 decreases by 87% in 30% iso-octanol during 9 months. Not only iso-octanol but also other alcohols cause continuous decrease of CA12 concentration over time.

IR spectra were resorted to compare variation of CA12-octanol or CA12-C272 compositions in a whole year. IR spectra of mixture of CA12 and C272 (Fig. 3c and d) did not change significantly after 365 days. The peak at 1216 cm\(^{-1}\) (Fig. 3a) is assigned as the hydroxyl deformation vibration of COOH group of CA12. With the addition of iso-octanol as phase modifier, the peak disappeared (Fig. 3b), suggesting the degradation of CA12. Three new peaks emerged at 1767 cm\(^{-1}\), 1284 cm\(^{-1}\) and 1179 cm\(^{-1}\) (C=O stretching vibration in esters). The 1767 cm\(^{-1}\) and 1179 cm\(^{-1}\) peaks are attributed by C = O stretching vibration in carboxylate esters and C–O stretching vibration in esters, respectively. Based on the above IR spectra, it is deduced that esterification occurred between CA12 and the alcohols.

Table 1

Composition of feed solution by HCl leaching.

<table>
<thead>
<tr>
<th>Ingredients</th>
<th>Y2O3</th>
<th>La2O3</th>
<th>CeO2</th>
<th>Pr6O11</th>
<th>Nd2O3</th>
<th>Sm2O3</th>
<th>Eu2O3</th>
<th>Gd2O3</th>
<th>Tb2O3</th>
<th>Dy2O3</th>
<th>Ho2O3</th>
<th>Er2O3</th>
<th>Tm2O3</th>
<th>Yb2O3</th>
<th>Lu2O3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mol fraction</td>
<td>0.674</td>
<td>0.0230</td>
<td>0.0040</td>
<td>0.0105</td>
<td>0.0543</td>
<td>0.0274</td>
<td>0.0001</td>
<td>0.0501</td>
<td>0.0110</td>
<td>0.0544</td>
<td>0.0174</td>
<td>0.0383</td>
<td>0.0055</td>
<td>0.0269</td>
<td>0.0029</td>
</tr>
</tbody>
</table>

Fig. 1. Molecular structure of CA12 and Cyanex272.

Fig. 2. The effect of the phase modifiers on CA12 concentration. [CA12]ini = 0.7 mol/L, modifiers = 30% (v/v), in kerosene.
The concentration of CA12 did not change obviously with TBP as modifier. Therefore, TBP was selected as the modifier in the HAB system.

3.2. The effect of the co-extractants

P204, P507, and Cyanex272 were selected to investigate the effects of co-extractants. The mono-stage extraction behavior of CA12-TBP, CA12-P204-TBP, CA12-P507-TBP, CA12-C272-TBP in mixed RE solution were compared (Fig. 4). The distribution ratio (\(D\)) and separation coefficients (\(\beta\)) of HRE were determined (Table 2). The results show that, separation coefficients between HRE and Y in HAB system are higher than that of CA12 system. For instance, Separation coefficients between Y and Lu increase in this order: CA12-TBP < CA12-P204-TBP < CA12-P507-TBP < CA12-C272-TBP. This means that co-extractants promote the extraction of HRE significantly in HAB system.

Cyanex272 is selected to constitute the HAB system in the current work, considering the stripping acidity of rare earths in Cyanex272 system is lower than in P204 and P507 systems [19], and low acid consumptions in the stripping stages are expected.

3.3. Fractional extraction

Ion-absorbed-type rare earth (IATRE) minerals, also called weathering crust rare earth minerals, are characteristic of higher content of medial and heavy RE elements, which have high economic value [20]. IATRE minerals are widely distributed in southern China such as Guangdong, Fujian, Hunan, especially Jiangxi province. Yttrium accounts for a mole proportion of 67.4% in the total REE calculating as oxides. Because yttrium is relatively high than the other medial and heavy RE elements, the suitable method is to separate Y at first step. However, the chemical characters of rare earths are very similar to yttrium, it is difficult to separate RE from Y by adjusting proportion of main extractant and co-extractant. The fractional extraction method with multiple stages of extraction sections and stripping sections was used to obtain yttrium product with high purity. Method of static calculation [20] is used to obtain the process parameters of fractional extraction. When the purity and yield of Y2O3 product is required as 99.9% and 95%, the number of the extraction section and scrubbing section are calculated to be 15 and 10, respectively. The flow rate ratio of organic phase, feed and scrubbing acid are deduced to 23:2:4.5. Other parameters and scheme of the process are given in Table 3 and Fig. 5. In a process with fractional extraction for one year of operation, the concentration and extractability was stable after the organic phases was recycled and used for three times. Y2O3 products were obtained in HAB-I and HAB-II processes with purity of 99.80% and 99.94%. Comparison of Y2O3 products in CA12 system and HAB system are shown in Table 4. Yttrium containing in the stripped RE solution is about 2%. Concentration of RE in each stage of HAB-I were also determined, some of them are presented in Fig. 6.

Table 2
The distribution ratio (\(D\)) and separation coefficients (\(\beta\)) of HRE in CA12-TBP and HAB system. \([HA] = 0.7 \text{ mol/L}; [HB] = 0.1 \text{ mol/L}, \text{TBP} = 15\% (v/v), \text{in kerosene}. \text{saponification rate} = 90\%. \text{Feed:} \gamma \text{RE} = 0.30 \text{ mol/L}, \text{initial pH} = 4, \text{leached from Longnan rare earth minerals.}

<table>
<thead>
<tr>
<th>System</th>
<th>(D)</th>
<th>(\beta)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Ho</td>
<td>Y</td>
</tr>
<tr>
<td>CA12-TBP</td>
<td>0.883</td>
<td>0.507</td>
</tr>
<tr>
<td>CA12-P204-TBP</td>
<td>1.28</td>
<td>0.790</td>
</tr>
<tr>
<td>CA12-P507-TBP</td>
<td>1.21</td>
<td>0.808</td>
</tr>
<tr>
<td>CA12-C272-TBP</td>
<td>1.11</td>
<td>0.775</td>
</tr>
</tbody>
</table>

Table 3
Parameters of process in fractional extraction simulation.

<table>
<thead>
<tr>
<th>System</th>
<th>Organic phase</th>
<th>Feed</th>
<th>Scrubbing acid</th>
</tr>
</thead>
<tbody>
<tr>
<td>CA12-TBP [9]</td>
<td>0.70 M CA12 and 15% TBP in kerosene, saponification rate = 85-90%</td>
<td>1.0 M RECl₃</td>
<td>3.0 M HCl</td>
</tr>
<tr>
<td>HAB-I</td>
<td>0.75 M CA12, 0.05 M C272 and 15% TBP in kerosene, saponification rate = 90%</td>
<td>1.03 M RECl₃</td>
<td>2.81 M HCl</td>
</tr>
<tr>
<td>HAB-II</td>
<td>0.68 M CA12, 0.12 M C272 and 15% TBP in kerosene, saponification rate = 90%</td>
<td>1.05 M RECl₃</td>
<td>2.98 M HCl</td>
</tr>
</tbody>
</table>
According to the data presented above, it is confirmed that separation selectivity between Y and other rare earths is superior in HAB than in single solvent extraction system. With the addition of co-extractant the extraction of HRE enhanced effectively. Purity of Y$_2$O$_3$ products increases in HAB-I and HAB-II with the increasing Cyanex272 proportions. In the new extraction system, most rare earth elements, e.g. Sm, Eu, Gd, Tm, Yb and Lu can be separated with Y from mix rare earths almost completely.

4. Conclusions

Double solvent (HAB) system using CA12 (HA) as main extractant and Cyanex272 (HB) as co-extractant, TBP as the phase modifier is quite efficient in separating Y from mixed rare earths. Not only the HAB extraction system keeps advantages of high separation efficiency between Y and LRE, but also it overcomes drawbacks of low separation factor between Y and HRE. Y$_2$O$_3$ product with a purity of 99.94% was obtained by HAB extraction from IATRE minerals which was higher than by CA12 extraction. The total recovery of Y was about 95%.

Considering that CA12 and Cyanex272 are very valuable to industrial practice for their high performance, it has great potential to prepare Y product with high purity from IATRE minerals by double solvent extraction system.

Acknowledgements

The authors wish to thank Shanghai Rare-earth Chemical Co., Ltd of China and CYTEC Canada Inc. for supplying extractants. This project is supported by the National Program entitled “basic research on high efficiency utilization of rare earth elements in the field of environmental protection” (2004CB719506), Natural Science Foundation of China (20371046; 50574080).

References

Table 4

<table>
<thead>
<tr>
<th>Ingredients</th>
<th>Y$_2$O$_3$, %</th>
<th>Y$_2$O$_3$-I, %</th>
<th>Y$_2$O$_3$-II, %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y$_2$O$_3$</td>
<td>99.47</td>
<td>99.80</td>
<td>99.94</td>
</tr>
<tr>
<td>La$_2$O$_3$</td>
<td>0.026</td>
<td>0.001</td>
<td><0.001</td>
</tr>
<tr>
<td>CeO$_2$</td>
<td>0.022</td>
<td>0.003</td>
<td>0.002</td>
</tr>
<tr>
<td>Pr6O${11}$</td>
<td><0.002</td>
<td><0.001</td>
<td><0.001</td>
</tr>
<tr>
<td>Nd$_2$O$_3$</td>
<td>0.003</td>
<td><0.001</td>
<td>0.008</td>
</tr>
<tr>
<td>Sm$_2$O$_3$</td>
<td>0.010</td>
<td><0.001</td>
<td><0.001</td>
</tr>
<tr>
<td>Eu$_2$O$_3$</td>
<td><0.002</td>
<td><0.001</td>
<td><0.001</td>
</tr>
<tr>
<td>Gd$_2$O$_3$</td>
<td><0.002</td>
<td><0.001</td>
<td><0.001</td>
</tr>
<tr>
<td>Tb$_2$O$_7$</td>
<td><0.002</td>
<td><0.001</td>
<td><0.001</td>
</tr>
<tr>
<td>Dy$_2$O$_3$</td>
<td>0.051</td>
<td>0.003</td>
<td><0.001</td>
</tr>
<tr>
<td>Ho$_2$O$_3$</td>
<td>0.068</td>
<td>0.005</td>
<td>0.009</td>
</tr>
<tr>
<td>Er$_2$O$_3$</td>
<td>0.130</td>
<td>0.113</td>
<td>0.032</td>
</tr>
<tr>
<td>Tm$_2$O$_3$</td>
<td>0.024</td>
<td>0.024</td>
<td><0.001</td>
</tr>
<tr>
<td>Yb$_2$O$_3$</td>
<td>0.170</td>
<td>0.036</td>
<td><0.001</td>
</tr>
<tr>
<td>Lu$_2$O$_3$</td>
<td>0.016</td>
<td>0.017</td>
<td><0.001</td>
</tr>
</tbody>
</table>

Fig. 5. Process scheme for separating Y by double solvent extraction.

Fig. 6. Composition variation of Y, Sm and Ho-Lu in each stage.

According to the data presented above, it is confirmed that separation selectivity between Y and other rare earths is superior in HAB than in single solvent extraction system. With the addition of co-extractant the extraction of HRE enhanced effectively, purity of Y$_2$O$_3$ products increases in HAB-I and HAB-II with the increasing Cyanex272 proportions. In the new extraction system, most rare earth elements, e.g. Sm, Eu, Gd, Tb, Tb, Tb and Lu can be separated with Y from mix rare earths almost completely.

学霸图书馆

www.xuebalib.com

本文献由“学霸图书馆-文献云下载”收集自网络，仅供学习交流使用。

学霸图书馆（www.xuebalib.com）是一个“整合众多图书馆数据库资源，
提供一站式文献检索和下载服务”的24小时在线不限IP图书馆。

图书馆致力于便利、促进学习与科研，提供最强文献下载服务。

图书馆导航：

图书馆首页 文献云下载 图书馆入口 外文数据库大全 疑难文献辅助工具