
A Unified Test Framework for Continuous Integration Testing of SOA solutions

Hehui Liu, Zhongjie Li, Jun Zhu, Huafang Tan, Heyuan Huang
IBM China Research Lab

Beijing, China
{hehuiliu, lizhongj, zhujun, tanhuaf, huanghey}@cn.ibm.com

Abstract—The quality of Service Oriented Architecture (SOA)
solutions is becoming more and more important along with the
increasing adoption of SOA. Continuous Integration Testing
(CIT) is an effective technology to discover bugs as early as
possible. However, the diversity of programming models used
in an SOA solution and the distribution nature of an SOA
solution pose new challenges for CIT. Existing testing
frameworks more focus on the integration testing of
applications developed by a single programming model. In this
paper, a unified test framework is proposed to overcome these
limitations and enable the CIT of SOA solutions across the
whole development lifecycle.

This framework is designed following the Model Driven
Architecture (MDA). The information of an executable test
case is separated into two layers: the behavior layer and the
configuration layer. The behavior layer represents the test
logic of a test case and is platform independent. The
configuration layer contains the platform specific information
and is configurable for different programming models. An
extensible and pluggable test execution engine is specially
designed to execute the integration test cases. A global test case
identifier instrumentation approach is used to merge the
distributed test case execution traces captured by ITCAM – an
IBM integrated management tool. A verification approach
supporting Boolean expression and back-end service
interaction verification is proposed to verify the test execution
result. Initial experiments have shown the effectiveness of this
unified test framework.

Keywords-continuous integration testing; service oriented
architecture

I. INTRODUCTION
It is becoming a common sense that the program bugs

should be detected and fixed as early as possible in order to
improve the software’s quality and cut testing cost. This is
why good unit testing is emphasized. Meanwhile, many
critical bugs can only be discovered after different
components of the software are integrated together. As
performing the integration testing when all the components
are completed violates the early detection principle,
Continuous Integration Testing (CIT) is proposed to reveal
the integration bugs earlier [1]. In CIT, the software is
integrated continuously after some codes are developed or
updated. The integration testing is done immediately to
discover the integration bugs as quickly as possible [1]. The
emerging of Service Oriented Architecture (SOA) is blurring
the traditional fixed boundary of software development and

integration, and hence adds more weight to the importance of
CIT in SOA from the industry side.

In line with this technical trend, the objective of this
paper is to build a unified test framework (UTF) to enable
the CIT of SOA solutions across the whole development
lifecycle. However, the diverse programming models and the
distribution nature of an SOA solution hinder the application
of CIT.

In SOA, the components of a system are usually
implemented using different programming models, such as
web service and EJB. Each model comes with its own
mechanism for internal logic and external invocation. With
the evolving of software technologies, newer ones are
emerging. In this case, most traditional test frameworks,
which more focus on the testing of the applications
developed by a single programming model, could not be
applied to the integration testing of SOA solutions [4, 7].
Besides, the components of an SOA system are usually
deployed in different application servers or machines. It is
difficult to verify the interactions between different
components since the traces are distributed in different
machines, especially when multiple test cases are executed
concurrently.

In previous work, the authors have proposed a new
simulation apparatus, called as surrogate, to simulate the
behaviors of unavailable components in SOA environments
[2]. This paper addresses the other aspects and completes the
unified test framework. This framework adopts the Model
Driven Architecture (MDA). An executable test case is
separated into two layers: the behavior layer, which is
programming model independent and the configuration
layer, which is programming model dependent. From
service interaction specification, test cases are generated.
Then, a flexible and extensible test case execution engine is
used to execute the integration test cases. A trace correlator
based on global case identifier instrumentation is proposed to
correlate the traces collecting by ITCAM [5] together. A
verification approach is proposed to verify both the
input/output data and the back-end operation interaction
sequence. The initial experiments have shown the
effectiveness of UTF.

The rest of this paper is organized as follows: section 2
explains the integration testing problems for SOA solutions
with an example. Section 3 elaborates the unified test
framework (UTF). Section 4 presents the UTF
experimentation results in two real cases. Section 5

2009 IEEE International Conference on Web Services

978-0-7695-3709-2/09 $25.00 © 2009 IEEE

DOI 10.1109/ICWS.2009.28

880

1: get Check Order Format Service
2: construct an XML snippet for the input order request
3: invoke doCheckOrderFormat by web service invocation
4: assert true for the returned result
5: get Process Order Service
6: construct a SDO for the input order request
7: invoke doProcessOrder by SCA invocation
8: verify the returned result

introduces the related works and section 6 concludes this
paper with future work prediction.

II. INTEGRATION TESTING PROBLEMS FOR SOA
SOLUTIONS

The software developed following SOA can bring many
benefits, such as higher flexibility and lower development
cost. At the same time, it also poses new challenges for the
CIT. Let us use the system showed in figure 1 as an example
to introduce the problems. This is an order process to handle
an order request. Totally it has 6 components. For an input
order request, firstly, the Check Order Format service is
invoked to check its format. If the format is not permitted by
this system, the order request is returned and not handled.
For a valid input order request, Process Order service is used
to dispose the order to be handled by other services.
Calculate Good Price calculates the good’s total price, and
the Calculate Shipping Price service is invoked next to
calculate the shipping price. After getting the price, the
Arrange Product service is responsible to arrange the
shipment of the product. Finally, if the price of the order is
greater than 100$, a notification will be sent to the customer
by Prepare Notification. This system is deployed in three
machines. Check Order Format component is an existing
web service, and is deployed in machine A. Calculate Good
Price and Calculate Shipping Price component are two
common web services deployed in machine C. The other
components are developed only for this system, so they are
exposed as SCA services, and deployed in machine B.

For this system, suppose we have an interaction scenario
as is shown in figure 2. The pseudocode of this scenario’s
executable test case is showed in Figure 3. In traditional test
framework, there are several problems or disadvantages to
execute this test case.

Firstly, for the same input content, the order request, two
different input objects, XML snippet (web service input
object) and Service Data Object (SDO) [9] (SCA service
input object) should be included in the executable test cases.
Two different invocation protocols, web service invocation
and SCA invocation, should also be supported.

Secondly, the output of doCheckOrderFormat (a method
of the Check Order Format component) is an XML message,
while the output of doProcessOrder (a method of the
Process Order component) is an SDO. In order to verify the
test results, two different verification methods should be
used (one for the XML verification, the other for the SDO
verification).

In summary, testers have to be concerned with different
protocols and this means a lot of burden. However, in SOA,
it is very common that multiple programming models are
used to develop an application.

Figure 1. Order process example

Thirdly, if the implementation of the Process Order
service is changed from SCA to web service, the executable
test case of figure 3 should be rewritten. As such kind of
changes can be frequent in SOA environments, test case
maintenance is costly.

Fourthly, a bug may exist in the interactions between the
Process Order and other services, such as Calculate Good
Price. The bug may be a wrong service invocation, a wrong
input sent, or a wrong output received. Unfortunately, such
kind of back-end service interactions cannot be verified in
traditional test frameworks, which only test a component or a
cluster of components from black-box view - only external
outputs are examined. There is no way to do back-end
service interaction assertion even in a single machine, not to
mention that in an SOA environment, the execution traces
are distributed in different application servers or machines.
They should be collected and correlated before any further
processing.

Figure 2. An interaction scenario

In fact, these four problems are mainly generated by the
diverse programming models (problem 1, 2 and 3) and the
distribution (problem 4) feature of SOA solutions. They
should be solved in order to enable the CIT in SOA
environments.

Figure 3. An executable test case example

881

III. A UNIFIED TEST FRAMEWORK FOR CIT OF SOA
SOLUTIONS

A. Storyboard and Architecture
Figure 4 shows a storyboard of CIT with UTF. This

storyboard includes 8 steps.
In step 1, the architect designs the architecture of an SOA

solution and its sequence diagrams. Then in step 2, the
integration test cases are generated semi-automatically with
the input sequence diagrams. Therein, each test case
describes the interactions between different components
implemented following different programming models,
including the input, output data and the interactions in the
back-end services. The generated test cases are uploaded to a
continuous integration testing server in step 3. This server is
used to run the integration test cases continuously. In step 4,
the surrogates for all designed components are generated
automatically from the assembly graph and service
description files and deployed to the CIT server. With the
generated surrogates, the integration test cases could be
executed automatically even when no components are ready
in step 5. The test result is fed back to the architect. We call
this case as pure simulation scenario. It is used to verify the
configuration and design of services. In step 6, during
development, the services are implemented or updated by
different developers. The codes are committed to CVS. In
step 7, the ongoing software is packaged with the
unimplemented components replaced by surrogates and
deployed to the CIT server. Finally, the same integration test
cases are executed automatically to verify the updated
software in step 8. When bugs are found, they are fed back to
the developers immediately. Then this process is rerun from
step 6. The case from step 6 to 8 is called as continuous
integration testing scenario in this paper. It is used to verify
the implementation and configuration bugs during
development.

Figure 4. The storyboard of CIT with UTF

Following the storyboard, we design the architecture of
UTF as figure 5.

The input of the framework is UML sequence diagrams.
A sequence diagram should describe the interactions
between the interfaces of different services. One example of
this kind of sequence diagram is the SOMA component flow
[3]. With the input sequence diagrams, the integration test
cases are generated by the integration test case generator

with manual help. The software under test is deployed in the
SOA environment, and the integration test case is executed
by a test case execution engine. During execution, for
unavailable components, the surrogate engine [2] is used to
simulate their behaviors.

During test execution, the ITCAM [5], an integrated
application management tool, is applied to capture and
collect the traces. Then the traces are inputted into the trace
correlator. The traces of the same test case are correlated
together. As the execution traces of different programming
models have different formats, the trace transformation is
applied to transform the correlated traces into a common
trace representation. Finally, the verification is performed on
the integration test case and execution trace. The test result is
fed back to the test case execution engine. In this
architecture, we omit the surrogate generator [2]. Because it
is an isolated plug-in and will not be introduced in this paper.
The following sections will introduce the details of each part
in the architecture.

Figure 5. The architecture of UTF

B. Two-layer executable test case model
In traditional test case representation, all information of

an executable test case is included in a single case model. In
fact, an executable test case is composed of two kinds of
information: the behavior logic and technical specific
information. The behavior logic is independent of the
programming model, and is the core of a test case. It could
be reusable for different platforms and programming models.
The technical specific information is a wrap of the behavior
logic. It changes with the specific programming model.

Following these considerations, we could use a two-layer
model to represent the executable test case. The first layer is
a platform independent test case model representing the
behavior logic (including the data logic); the second layer is
a test case configuration model representing the specific
technical information (including the data type). The specific
technical information could be separated into a configuration
file. Then for the specific service, we only need to set its
technical specific information.

Figure 6 shows the test case behavior logic model. In this
model, the test logic and event together represent the
invocation sequence of a test case. In current UTF
implementation, the sequence, while and concurrent test
logic are considered to be supported and the sequence test
logic has been implemented. For an event (representing an

882

invocation of a service), only the service, interface and
operation name are contained in this model. The specific
programming model information, such as the namespace of a
web service, is put into the configuration model. There are
two event types: two-way (default value) and out. The two-
way means that the next event could be executed until the
output for the current invocation is received. The out means
that this is an asynchronous invocation, and there is no
response message. The assertion attached with an event is
the assertion expression for the expected output data. It can
be written as JavaScript. If no assertion is attached, the
defined output is used as the expected output to check the
real output.

Figure 6. The test case behavior logic model

The input/output data could be defined as variable and a
variable could be reused by other variables via reference. If a
variable is a complex type, its attributes are included in this
variable by its field attributes. Currently, the simple data
types of java programming language are considered as
simple types and supported in UTF. Other types are
considered as complex types. The isNull attribute of the
variable indicates whether this variable is a null pointer. The
isEmpty attribute indicates whether this variable is a
container, for example a list. If isEmpty is true, it indicates
that this variable is a container, which is not null, but no item
is contained in this variable. The technical specific
information of the variable, such as the namespace of an
SDO, is also divided into the configuration model.

Figure 7. The test case configuration model

Figure 7 shows the configuration model. The
serviceDefinitionFile indicates the file location of the
services and data structure definitions. By the files, the test
case editor could load the technical specific information of
the services. The emulator specifies which components
should be surrogates even when the real components have
been implemented. The eventITInfo specifies the technical
specific information of a service, such as the namespace,
composite name of a SCA service. The technical specific
information is different for different programming model.
For web service, the soap address is required, while for SCA,
the composite name is required. In order to handle this case,
the ITInformation class is used to represent all the technical
specific information of a service.

Figure 8. The behavior logic file of figure 3

<?xml version="1.0" encoding="UTF-8"?>
<testsuite:TestSuite ...>
 <variables>
 <variable id="0" name="apples" isSimpleType=" false"
type="Order">
 <field name="goodName" type="java.lang.String"
value="apple"/>
 <field name="unitPrice" type="double" value= "2.0"
/>
 <field name="quantity" type="double" value="45" />
 </variable>
 </variables>
<testcase id="1" description="put a valid order request" >
 <sequence>
 <event serviceName="CheckOrderFormat" interface
_portType="CheckOrderFormat" operation="doCheck
OrderFormat">
 <inputs>
 <input id="1" name="requestOrder" refVariable="
//@variables/@variable0"/>
 </inputs>
 <output name="result" type="boolean" value=
"true"/>
 <script expressionValue=""/>
 </event>
 <event serviceName="ProcessOrder" interface_
portType="ProcessOrder" operation="doProcessOrder">
 <inputs>
 <input id="2" refVariable="//@variables/@
variable0"/>
 </inputs>
 <output name="result" type="java.lang.String" value
="success"/>
 <assertion expression= "assert.assertEquals(result,
"success");"/>
 ...
 </event>
 </sequence>
 </testcase>
</testsuite:TestSuite>

883

Figure 8 and 9 respectively give a behavior logic and
configuration example for the executable test case of figure
3. In figure 8, the reference to a variable is indicated by the
path to the variable and its id. For example, the
//@variables/@variable0 means that the variable is under the
node variables, and its id is 0. From figure 8 and 9, it could
be seen that by this presentation, the test logic of an
executable test case is separated with the technical specific
information, and when the technical specific information is
changed, only the configuration is required to be modified.

Figure 9. The configuration file of figure 3

IV. TEST CASE GENERATION BASED ON SEQUENCE
DIAGRAMS

The sequence diagram specifies the interactions between
different components, and is fit for being used to generate
the integration test cases. While, in general, it only gives a
high level overview of the system behavior, and is not
sufficient to generate an executable test case. In this paper,
the sequence diagram is only used to generate the platform
independent test case in UTF, and the execution required
information is generated by leveraging the service
description file such as the WSDL of web service, EJB
description file of EJB. This information is separated in the
configuration file of the test case. For simplification, in this
paper, we do not generate the data because there is not
always enough information (such as the OCL constraint of
the message) is provided by the sequence diagram.

In platform independent test case generation, firstly, the
input sequence model is transformed into an intermediary

model, which is called as service interaction meta-model
(SIM) in this paper. SIM in fact is a tree structure. In the tree,
every node represents an operation of an interface or a
condition control node, such as sequence, choice node. In the
SIM, by applying the tree travel algorithm, the interaction
sequences are generated. Each interaction sequence is
considered as the behavior logic of an integration test case
initially.

Based on the interaction sequences and configuration
files, an integration test case editor is also developed to input
the test data and modify the interaction sequences. In the test
case editor, the platform independent test case model is
merged with its configuration information to form a memory
test case model, and then the editor is done to the memory
model. When save action happens, the memory test case
model is separated into platform independent test case and
test case configuration model.

V. A FLEXIBLE AND EXTENSIBLE TEST CASE EXECUTION
ENGINE

Based on the platform independent test case model and
test case configuration model, we design a flexible and
extensional execution engine to execute the test cases. The
architecture is showed in figure 10. In this execution engine,
with the input test case behavior logic and configuration file,
the test schedule is responsible for the behavior logic
explanation. The test input data is constructed by the test
input constructor. Then the interfaces of the software under
test are invoked to execute by the test invoker.

Figure 10. The test execution engine

The test invoker and test input constructor both should
consider the specific programming model information. So
they are designed as two extensible plug-in. For a specific
programming model, two specific plug-in should be
implemented by extending from these two plug-in. In current
UTF, we have implemented the plugin for three program
types: web service, EJB and the SCA developed by IBM
WebSphere Integration Developer (WID) [11].

VI. TRACE CORRELATOR BASED ON TEST CASE IDENTIFIER
INSTRUMENTATION

In order to capture the test case execution traces
distributed in different application servers or machines,
ITCAM [5] is used in UTF to collect the execution traces.
However, ITCAM could only capture and correlate the traces
for a single request (invocation). In a test case, it is usual that
multiple invocations (multiple requests) are executed and the
traces coming from multiple invocations need to be
correlated together. So, in this paper, a trace correlation

<?xml version="1.0" encoding="UTF-8"?>
<configuration ...>
 <ServiceDefinitionFiles>
 <ServiceDefinitionFile filelocation= ... programType=
"webService"/>
 ...
 </ServiceDefinitionFiles>
 <eventConfig serviceName="CheckOrderFormat"
interface_portType="CheckOrderFormat" operation=
"doCheckOrderFormat" programType="webService">
 <eventITInfo>
 <ITInfo name="soapAddress" value="http://.../
CheckOrderFormat"/>
 ...
 </eventITInfo>
 <inputs>
 <variableITInfo variableId="1" name="requestOrder"
>
 <ITInfo name="nameSpace" value="http://Order
ProcessLib"/>
 ...
 </variableITInfo>
 </inputs>
 </eventConfig>
</configuration>

884

method based on the test case identifier instrumentation is
proposed to correlate the traces collecting by ITCAM
together.

Figure 11 shows how our approach works at the high
level. When the requests are triggered during test case
execution, the test controller at testing client side will
intercept the requests and attach an identifier which identifies
the correlation between the test case and the request to the
request message. When the request goes into the software
under test, the mapping between request and the identifier is
recorded, the execution path of request is tracked and
correlated by ITCAM (the ITCAM agent is deployed in the
same machine with the application server, and the ITCAM
server is deployed in a central server) [5]. Thus according to
the linkages of case identifier and requests, the execution
traces of a same test case could be correlated by the trace
correlator.

To add identifier to the requests during test case
execution, the test controller should work as an API probe or
a proxy which intercepts the requests to the system under test
(SUT) and adds the identifier to the request. In current UTF
implementation, the API probe is integrated as a part of the
test execution engine, and the test case id with time stamp is
used as the case identifier.

To record the mapping between the case identifier and
requests, instrumentation in the system under testing is
added. It is located at the middleware layer, such as
application server for J2EE applications. So there are no
changes involved at application code level.

Figure 11. Execution traces correlation

VII. TEST RESULT VERIFICATION
The test result verification includes the verification of the

interaction sequences and the input/output data. Firstly, the
interaction sequence will be verified to check whether the
correct operation sequence is executed. Then, the
input/output data specified in the test case file will be
verified with that captured in the execution trace.

Firstly, the execution traces for a specified programming
model is transformed into a common trace. Based on the test
case and the common trace, each operation is fetched to be
verified. If the operation in the trace does not match that in
the test case, an error message is created and the verification
is stopped. For the correct invocation, two data verification
approaches are applied to verify the data. One is to verify the
real output with expected output by constructing the object
for the data. For a complex data type, the comparison is
decomposed to compare each attribute of the data type. If
one of the attributes is wrong, an error message is generated.

For the event with assertion written by JavaScript, the data is
constructed as a JavaScript object and the Rhino [12] is
leveraged to execute the expression script and return the
executed result.

VIII. EXPERIMENTS
Experiments have been done on a HR management

system and a meeting room management application.

A. HR management case
In this experiment, we want to verify whether the bugs

could be found by UTF even in the case that no codes is
implemented, and what defect types could be found by UTF
during the whole development lifecycle.

1) Overview: This case is a HR management system.
Figure 12 shows the architecture of the system. Therein, the
common service is implemented by one company. It is
exported as web service, and invoked by payroll
management and recruiting management component. The
payroll management, recruiting management component
and the other data layer components are implemented by
another company and the SCA was adopted as the
programming model. Between the SCA components, the
SCA invocation method is applied, while the web service
invocation method is applied to consume the web service.
Overall, there are 17 components in the business logic layer
including 58 interfaces, 22 components in the data layer
including 22 interfaces that should be developed, each
interface contains several operations. This system was
developed using WID 6.0.2 and deployed to the IBM
WebSphere Process Server (WPS) 6.0.2.

Figure 12. The architecture of HR management system

2) Experiment result: In this experiment, two scenarios:
pure simulation and continuous integration testing
introduced in section 3.1 are performed. Some exciting
results have been observed as is shown in table 1. Therein,
we classify the bugs found in integration testing into five
types.

1. Incorrect method call means that a redundant service
invocation is implemented in the code or a missing service
invocation, or a wrong service is invoked.

2. Incorrect parameter passing means that the
mismatched inputs (the data type is correct but the content is
wrong) are passed into the invoked service or the output
returning from the invoked service violates the expected
output.

885

3. Configuration problem is mainly related with the
configuration problem of the service, such as missing
service export (an interface is designed to be exported as a
service, but in implementation, it is not), wrong service
reference (a component references a service that is different
with the design document), missing service reference (a
service should be referenced in the assembly graph of the
application but not).

4. Interface mismatch means that the invoked service
mismatches the actual, e.g. the invoked operation does not
exist in the service definition.

5. Function mismatch means that the required function
for the invoked service does not exist or the invoked service
provides more function (or duplicated services are defined
in multiple components).

In the experiment, total 22 bugs are found. Therein, pure
simulation finds 7 bugs. These 7 bugs are mainly the
configuration problem and function mismatch. In traditional
testing, these problems are found only after the components
have been finished, which greatly adds difficulty to problem
determination and increases fixing cost. Half of the 22 bugs
are related with the incorrect method call and interface
mismatch. They also could only be found after the
components have been finished and integrated in traditional
fixing boundary testing method. While by applying UTF,
these bugs are discovered immediately after the codes are
finished, greatly reducing the time to bug fixing. More
importantly, during the whole development process, only one
group of test cases are needed to be designed, and in case
that some services’ implementation technology is changed,
only the configuration information need to be modified.

TABLE I. THE EXPERIMENT RESULT OF HR CASE

Redundant invocation
Lost invocation 2

Incorrect Method
call

Wrong invocation 2
Wrong input Incorrect parameter

passing Wrong output 1
Miss service export 3

Service reference error 4
Configuration

problem
Miss service reference 2

Interface mismatch 7
Redundant function (service) 1 Function mismatch

Lost function (service)

B. Meeting Room Management Case
In this case, we want to verify whether the UTF could still

find bugs effectively in the case that a very rigid unit testing
and code review has been applied to the unit code, and what
types of bugs could be found.

1) Overview: The meeting room management
application is a sub system of an enterprise business
management ERP system. This system is developed by EJB.
Totally 4 components are included the meeting room
management application. Figure 13 shows the architecture.
In this system, an external service, common data access
service, is invoked by the personal notes pad and meeting
room components. Totally 24 interfaces in the business
logic layer and 20 interfaces in the data access layer are

developed. The application is developed by the IBM
Rational Software Developer 6.0.2 and deployed to the
WebSphere Applocation Server (WAS) 6.0.2. In the
experiment, 5 students are chosen to implement the
application and 2 students are chosen to do code review
after the code has been implemented. For each piece of unit
code, the all-code-line coverage criterion should be satisfied
for the unit testing before the code is submitted to the CVS.
Once the code is submitted to the CVS, the integration test
cases are executed to verify the application.

2) The experiment result: During the integration testing,
total 7 bugs are found, and their distributions are showed in
table 2. Table 3 shows the found bugs in code review, unit
test and CIT. It could be seen that even the rigid code
review and unit testing are done to the unit codes, in
integration testing, some bugs are still found immediately
after the code is committed. Most of the bugs are related
with wrong output of the invoked services. There are no
incorrect method call or configuration bugs. As the service
interaction in this application is relatively simple, by rigid
code review and unit test, nearly all the configuration bugs
have been removed before integration testing. However,
even very rigid test activities are performed before the
integration testing, the semantic related bugs still cannot be
avoided, for example, the output format mismatches with
what expects. In this case, CIT could find the bugs
immediately after the code is submitted to the CVS, and
identify the failed interfaces. The CIT continues to show its
powerful capability to find the bugs earlier before the
system test.

Figure 13. The architecture of meeting room management application

TABLE II. THE BUGS FOUND IN INTEGRATION TEST

Wrong input 1 Incorrect parameter
passing Wong output 6

TABLE III. THE BUGS FOUND IN DIFFERENT TEST ACTIVITIES

 Code Review Unit
Test

CIT

Bug number 10 22 7

IX. RELATED WORKS
The CIT has advanced the integration testing to an earlier

time during the whole development lifecycle and makes it
become more important in bug discovery. However, in
academic research, few works are done in the area of
integration testing [4, 7, 8]. Most integration testing works
mainly focus on the integration test case generation [8], only
few works take the test execution into consideration [4, 7]. In

886

[4], the sequence diagram is applied to generate the
integration test cases and stubs. Then the integration testing
could be done immediately. However, this work could only
be applied to test the pure and stand-alone java program. In
[7], an integration test framework is proposed for the object
oriented program. In this method, based on the sequence and
class diagram, the method interaction order and condition
constraints are generated, which are called as coordination
contract. Then these coordination contracts are embedded
into the implemented java codes by the coordination
development environment (CDE). The test data and test
driver are designed or generated for the software under test
and the embed coordination contract is applied to verify the
behavior of software under test. This method also could only
be applied to the pure and stand-alone java program and
definitely is not suitable for the SOA solution.

Along with the wide adoption of SOA, some works have
been started to focus on special testing problems introduced
by SOA solutions. In 2004 [6], a Service Integration Test
Tool (SITT) is proposed to test SOA solutions. This work
focuses on how to collect the execution traces from the
distributed services. In our work, the trace collection is in
fact done by ITCAM. Further, SITT only considers the web
service program type, and the test result verification should
be done manually. When different test cases are executed
concurrently, no approach is proposed on how to merge the
execution traces.

The OMG MDA is an approach to producing code from
abstract, human-elaborated specifications. One benefit of
MDA is to support platform independent design that is
reusable across implementation technologies. In recent years,
largely driven by application integration, many SOA
researchers and developments have embraced the MDA
paradigm to enable the consistent and persistent modeling,
design, implementation and management of solutions that
integrate existing legacy systems as well as introduce new
services. For example: Service Component Architecture
(SCA), Business Process Modeling Notation (BPMN) [10]
and Business Process Execution Language (BPEL). The
introduction of UTF is a natural action in such a trend. It
allows generating platform independent test cases from the
SOA models, and then attaching platform specific
configuration when the implementation technologies are
determined. In this way, the integration testing of SOA
solutions can be greatly accelerated.

X. CONCLUSION AND FUTURE WORK
CIT is an effective technology to discover the bugs

continuously. In this paper, a unified test framework (UTF)
is proposed to support the CIT under the SOA environment
across the whole development lifecycle. In this framework, a
test case is separated into two layers, behavior logic layer
and test case configuration layer including the technology
specific information. The interaction sequence of the
integration test case is generated from the sequence diagram,
and a flexible and extensible execution engine is proposed to
execute the integration test case. Our previous work,
surrogate [2], is applied to simulate the behavior of
unavailable components. Base on the execution trace

captured by ITCAM [5], the traces coming from a same test
case is correlated together by a global case identifier. Based
on the object comparison and expression verification, the
execution trace is verified with the expected result. The
initial experiments have shown the effectiveness of UTF. In
the experiments, we have tried to identify the bug types
existing in the integration testing of SOA solutions. By this
initial classification, we hope to trigger more research about
the integration bug types causing by SOA solutions.

As an initial integration test framework, we haven’t had
chance to apply it in the CIT for large SOA solutions,
although the relative small case experiments have shown its
potential effectiveness. However, we believe that UTF also
works for large SOA solutions. Of course, more technical
research topics are still required to improve UTF, such as test
data generation from sequence flows, test case execution
ordering during CIT, automated test case selection based on
change analysis of the submitted code.

ACKNOWLEDGMENT
We thank for Xiong Xiong, Lichuan Shi and Bo Xiao for

helping to implement the unified test framework.

REFERENCES
[1] Fowler M., Continuous integration, (2006). http://

martinfowler.com/articles/continuousIntegration.html
[2] He Yuan Huang, He Hui Liu, Zhong Jie Li, Jun Zhu. Surrogate: A

Simulation Apparatus for Continuous Integration Testing in Service
Oriented Architecture, 2008 IEEE International Conference on
Services Computing (SCC 2008), July 8-11, 2008, Honolulu, Hawaii,
USA.

[3] Liang-Jie Zhang, Nianjun Zhou, Yi-Min Chee, Ahamed Jalaldeen,
Karthikeyan Ponnalagu, Renuka R. Sindhgatta, Ali Arsanjani, Fausto
Bernardini . SOMA-ME: A platform for the model-driven design of
SOA solutions. 47(3) 397-413. IBM Systems Journal, 2008.

[4] Falk Fraikin, Thomas Leonhardt. SeDiTeC - Testing Based on
Sequence Diagrams. In the proceedings of the 17th IEEE
International Conference on Automated Software Engineering
(ASE’02), pages. 261-269. Washington, DC, USA, September, 2002.

[5] Tivoli. Software. IBM Tivoli Composite Application Manager for
J2EE.

[6] Schahram Dustdar, Stephan Haslinger. Testing of Service Oriented
Architectures – A practical approach. In the proceedings of 5th
Annual International Conference on Object-Oriented and Internet-
Based Technologies, Concepts, and Applications for a Networked
World, pages. 97-109. Erfurt, Germany, September, 2004.

[7] Tom Maibaum, Zhe (Jessie) Li. A Test Framework for Integration
Testing of Object-Oriented Programs. In the proceedings of the 2007
conference of the center for advanced studies on Collaborative
Research, pages, 252-255. Richmond Hill, Ontario, Canada, 2007.

[8] Jean Hartmann, Claudio Imoberdorf, Michael Meisinger. UML-Based
Integration Testing. In the proceedings of the 2000 ACM SIGSOFT
International Symposium on Software Testing and Analysis
(ISSTA’00), pages. 60-70. Portland, Oregon, United States, 2000.

[9] Open SOA Collaboration, Service Data Object Specifications,
available at http://www.osoa.org/ display/Main/Service+Data
+Objects+Specifications.

[10] BPMN. http://www.bpmn.org/.
[11] IBM Software. http://www-01.ibm.com/software/ integration/wid.
[12] Mozilla.org. http://www.mozilla.org/rhino/.

887

本文献由“学霸图书馆-文献云下载”收集自网络，仅供学习交流使用。

学霸图书馆（www.xuebalib.com）是一个“整合众多图书馆数据库资源，

提供一站式文献检索和下载服务”的24

小时在线不限IP

图书馆。

图书馆致力于便利、促进学习与科研，提供最强文献下载服务。

图书馆导航：

图书馆首页 文献云下载 图书馆入口 外文数据库大全 疑难文献辅助工具

http://www.xuebalib.com/cloud/
http://www.xuebalib.com/
http://www.xuebalib.com/cloud/
http://www.xuebalib.com/
http://www.xuebalib.com/vip.html
http://www.xuebalib.com/db.php
http://www.xuebalib.com/zixun/2014-08-15/44.html
http://www.xuebalib.com/

	A Unified Test Framework for Continuous Integration Testing of SOA Solutions
	学霸图书馆
	link:学霸图书馆

