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A portfolio choice model in continuous time is formulated for both complete and
incomplete markets, where the quantile function of the terminal cash flow, instead of
the cash flow itself, is taken as the decision variable. This formulation covers a wide body
of existing and new models with law-invariant preference measures, including expected
utility maximization, mean–variance, goal reaching, Yaari’s dual model, Lopes’ SP/A
model, behavioral model under prospect theory, as well as those explicitly involving
VaR and CVaR in objectives and/or constraints. A solution scheme to this quantile
model is proposed, and then demonstrated by solving analytically the goal-reaching
model and Yaari’s dual model. A general property derived for the quantile model
is that the optimal terminal payment is anticomonotonic with the pricing kernel (or
with the minimal pricing kernel in the case of an incomplete market if the investment
opportunity set is deterministic). As a consequence, the mutual fund theorem still
holds in a market where rational and irrational agents co-exist.

KEY WORDS: portfolio choice, continuous time, quantile function, law invariant measure, utility
maximization, Yaari’s dual theory, goal-reaching, behavioral finance, probability distortion, mutual
fund theorem.

1. INTRODUCTION

Study on continuous-time portfolio choice has predominantly centered around expected
utility maximization (including the mean–variance model—although it has its own sub-
tly unique features) since the seminal papers of Samuelson (1969) and Merton (1969).
Abundant research around, there have been essentially two approaches developed to
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solve the utility model. One is the stochastic control or dynamic programming approach,
initially proposed by Merton (1969, 1971), which transforms the problem into solving a
partial differential equation called the Hamilton–Jacobi–Bellman (HJB) equation. The
other one is the martingale approach. This approach, developed by Harrison and Kreps
(1979), Harrison and Pliska (1981, 1983), and Pliska (1986), employs a martingale char-
acterization to turn the dynamic wealth equation into a static budget constraint and
then identifies the optimal terminal wealth via solving a static optimization problem.
If the market is complete, an optimal strategy is derived by replicating the optimal ter-
minal wealth in the same spirit of perfectly hedging a contingent claim. Karatzas and
Shreve (1998) gives a systematic account on this approach. In an incomplete market with
possible portfolio constraints, the martingale approach is further developed to include
the so-called convex duality machinery; see, for example, Cvitanić and Karatzas (1992),
Kramkov and Schachermayer (1999), and Goll and Rüschendorf (2001).

However, it has been known for a long time that some of the basic tenets of the
expected utility as a risk preference measure are systematically violated in practice.
Hence, many alternative preference measures have been put forth, notably Yaari’s “dual
theory of choice” (Yaari 1987) which attempts to resolve a number of puzzles and
paradoxes associated with the expected utility theory (although, as Yaari 1987 admits,
the dual theory would lead to other paradoxes). In this theory, instead of applying
a utility which is essentially a “distortion” in payment, one distorts the probability
decumulative function of the payment. This probability distortion function, as Yaari
shows, represents the risk preference in a different way. In particular, risk aversion is
characterized by a convex—rather than concave—distortion. Other theories developed
along this line of involving subjective probability distortions include Lopes’ SP/A model
(Lopes 1987; Lopes and Oden 1999) and, most significantly, Kahneman and Tversky’s
prospect theory (Kahneman and Tversky 1979; Tversky and Kahneman 1992), both in
the modern behavioral decision-making paradigm.

It is a natural problem to formulate and solve a portfolio choice model involving
probability distortions; yet a key technical challenge is that such a distortion renders a
nonlinear expectation that destroys the time-consistency necessary for the dynamic pro-
gramming approach as well as the convexity necessary for the convex duality approach.

Another large set of portfolio choice problems could involve explicitly probability
and VaR/CVaR/quantile, instead of expectation, in their objectives and/or constraints.
For instance, the goal-reaching problem, initiated by Kulldorff (1993), investigated ex-
tensively by Browne (1999, 2000), and later extended to hedging of contingent claims
by Föllmer and Leukert (1999) and Spivak and Cvitanić (1999), is to maximize the
probability of the terminal cash flow in excess of a given level or a given benchmark.
Other models could include VaR/CVaR/quantile as risk measures.1 It is well known

1Oddly enough, despite an extensive literature search we have not found any study on continuous-time
diffusion models with VaR/CVaR/quantile appearing explicitly either in objectives or in constraints (note
in particular that, although the title of Föllmer and Leukert 1999 includes the word “quantile,” the paper
deals with a problem of maximizing the probability of successfully hedging a contingent claim). Kataoka
(1963) probably is the first to include a quantile criterion in a single-period portfolio choice model. Grigor’ev
and Kan (2004) and Dhaene et al. (2005) both consider dynamic portfolio selection problems with explicitly
present quantile-related criteria, but their settings are both very specific and restrictive (the former studies a
discrete-time model with uniform distribution of returns, and the latter confines the portfolios to the class of
“constant mix” ones). For more recent study/survey on quantile-related performance measures see Föllmer
and Schied (2004), Dhaene et al. (2006), and Cherny and Madan (2009).
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that these problems cannot be solved, at least directly, by conventional approaches. For
example, although one could write a probability as an expectation of an indicator func-
tion, the latter is inherently nonconvex. Dynamic programming, on the other hand,
becomes inapplicable for problems explicitly involving VaR/quantile.

In summary, there could be many alternative, ad hoc, and economically sensible port-
folio choice models where the nice properties (such as time-consistency and convexity)
we have all along taken for granted would be missing.2 Ad hoc approaches have been
developed to solve a very limited number of these models. A question arises as to whether
it is possible to establish/develop a unified, general framework/approach to cover/solve
all the aforementioned models (and many others) once and for all. The answer is, as we
will show subsequently, affirmative, and all it takes is a new perspective compared to the
standard portfolio selection literature in mathematical finance.

To reach the answer to the preceding question, this paper explores and exploits two
essential commonalities among all the seemingly different models mentioned earlier.
One is that all the preference/performance measures involved are law-invariant. That is,
agents care about only the probability distribution of the terminal cash flow, rather than
the cash flow itself. The other commonality is that all the preferences can be written as
a distorted mean where both the payment and its distribution function are altered; see
(2.15). An analysis shows that if we change the decision variable from the terminal cash
flow X to G(Z), where G is the quantile function of X and Z is any uniform random
variable on [0, 1], then the preference reduces to a linear expectation (under a possibly
different probability measure)! This change of variable does not change the preference
value because X and G(Z) are always identical in law. There is, however, another issue to
be addressed with this technique because the budget constraint is inherently law-variant
so the preceding change of variable would in general violate the constraint. However,
a dual argument originally due to Dybvig (1988), in the classical economic spirit that
(loosely speaking) maximizing a performance measure is equivalent to minimizing the
associated cost, reveals that X can also be replaced by G(Z) in the budget constraint
where Z is a particular uniform variable generated by the pricing kernel.

Based on these analyses, we are prompted to formulate a portfolio choice model, very
general in the sense that it covers all the aforementioned models and many others, where
the optimal quantile function of the terminal payment is to be chosen. Because we have
recovered linear expectation in the quantile model, we are able to propose a general
solution scheme based on the Lagrange approach and a weak/strong duality argument.
Once the optimal quantile function is obtained, the corresponding optimal terminal
cash flow can be recovered by a simple formula, which as a by-product indicates that it
is anticomonotonic with the pricing kernel. If the market is complete, then the optimal
portfolio is the one replicating the obtained terminal payoff. If the market is incomplete,
then we seek the so-called minimal pricing kernel which exists in some cases such as when
the investment opportunity set is deterministic.

We demonstrate our formulation and solution procedure by applying them to the goal-
reaching model and Yaari’s model. Analytical solutions are obtained for both models
which turn out to be of the same binary, “win-or-lose-all” structure, although there are
subtle—and indeed substantial—differences between the two in terms of the implied
risk–return preferences. It should be noted that, while our approach gives an alternative

2Some models may lack both the time-consistency and the convexity. For example, Lopes’ SP/A model
has both a probability distortion and a probability constraint, and Kahneman and Tversky’s prospect model
has probability distortions and an S-shaped utility function.
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way to that of Browne (1999) in solving the goal-reaching model, we actually extend the
setting to include possibly stochastic opportunity sets for which Browne’s HJB method
would fail.3 Moreover, the formulation and solution to the continuous-time Yaari’s dual
model are completely new to our best knowledge.

The quantile formulation also enables us to establish a mutual fund theorem at least in
the case of a deterministic opportunity set (complete or incomplete market regardless).
This has a potentially important consequence in developing a capital asset pricing model
for a market where rational (utility maximizing) and irrational (behavioral) agents coexist.

We finally remark that it is not new at all in the economics (including mathematical
economics) literature to express risk preferences in terms of quantiles or distribution func-
tions; see, to name but a few, Machina (1982), Yaari (1987), and Dybvig (1988). However,
to our best knowledge the quantile formulation and its general solution procedure for
possibly nonconvex/nonconcave utility functions and nonconvex/nonconcave probabil-
ity distortions are new in the portfolio choice literature especially in the continuous-time
setting.4,5 The idea was in fact around in Jin and Zhou (2008) for overcoming the dif-
ficulties arising from the nonconcavity and time-inconsistency in the continuous-time
portfolio selection model under the prospect theory, but it was used there in an ad hoc
nature. This paper attempts to systematically utilize and develop the quantile approach
to solving (among others) possibly nonexpected and nonconvex/nonconcave portfolio
choice problems.

The remainder of this paper is organized as follows. Section 2 proposes the general
quantile model motivated by five concrete models. In Section 3, a solution scheme is
described for the general model, followed by its application to two specific models—the
goal-reaching and Yaari’s models—with explicit solutions. Economic interpretations of
the solutions obtained are discussed. Section 4 is devoted to the incomplete market, and
Section 5 to the mutual fund theorem. Finally, Section 6 concludes.

3The statistical hypothesis testing argument of Föllmer and Leukert (1999) and the martingale approach
of Spivak and Cvitanić (1999) could also solve the goal-reaching model with a stochastic opportunity set.

4Despite its title, Dybvig (1988) does not formulate or solve any specific class of portfolio choice problems
per se. Instead, it is concerned with the dual problem of portfolio choice, namely, to characterize the lowest
cost of any given terminal distribution. As discussed earlier, the dual argument is indeed one of the main
theoretical foundations of the quantile formulation here—although we were not aware of Dybvig’s work
when we were carrying out this research.

5After this paper was accepted, the papers by Schied (2004) and Carlier and Dana (2006) came to our
attention. Schied (2004) introduces a quantile-based optimization technique to solve a specific class of
convex, robust portfolio selection problems. In Carlier and Dana (2006), a more general class of quantile-
based calculus of variations problems with law-invariant concave criteria are formulated, and the issues of
existence of solutions, necessary conditions for optimality, and sufficient conditions for the regularity of
solutions are addressed. These results are closely related to the ones in this paper, but there are important
differences. On p. 130, Carlier and Dana (2006), it is stated that “we shall also require v to be concave
(in the random variable X) . . ..” This requirement is violated by our model (or indeed any model with
nontrivial probability distortions). Of course, in Section 3.1 there (which contains results closest to ours),
this assumption does not seem to be necessary. However, therein the criterion v is required to be strictly
second-order stochastic dominance (SSD) preserving, which is necessary in proving the key Proposition 3.1.
Notice that being SSD preserving is quite a strong assumption; it is strictly stronger than law invariance
plus monotonicity (which are the only two essential assumptions imposed in our paper here)—see the
bottom of p. 130 in Carlier and Dana (2006). Only when v is concave do the two coincide—see Proposition
2.4. In other words, certain concavity of the criteria is implicitly assumed and seems to be critical in the
arguments of Carlier and Dana (2006). In contrast, one of the key points of our paper is to abandon the
convexity/concavity (be it in the utilities or in the probability distortions) assumption altogether. Indeed,
because of the S-shaped utility functions and the reversed S-shaped probability distortions involved, the
criterion in a general prospect theory model is inherently nonconcave in either cash flows or in quantiles.
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2. A NEW PORTFOLIO CHOICE FORMULATION

In this section, we set up the continuous-time market, and explain the background and
motivation of a new portfolio choice formulation via five concrete models.

2.1. A Continuous-Time Market

Let T > 0 be given and (�,F, (Ft)0≤t≤T, P) be a filtered probability space on
which is defined a standard Ft-adapted n-dimensional Brownian motion W(t) ≡
(W1(t), . . . , Wn(t))� with W(0) = 0. It is assumed that Ft = σ {W(s) : 0 ≤ s ≤ t}, aug-
mented by all the P-null sets. Here and henceforth A� denotes the transpose of a matrix
A, and a+ := max(a, 0), a− := max(−a, 0) for a ∈ R.

We define a continuous-time financial market following Karatzas and Shreve (1998).
In the market there are m + 1 assets being traded continuously. One of the assets is a
bank account whose price process S0(t) is subject to the following equation:

d S0(t) = r (t)S0(t) dt, t ∈ [0, T]; S0(0) = s 0 > 0,(2.1)

where the interest rate r (·) is an Ft-progressively measurable, scalar-valued stochastic
process with

∫ T
0 |r (s)| ds < +∞ a.s. The other m assets are stocks whose price processes

Si (t), i = 1, . . . , m, satisfy the following stochastic differential equation (SDE):

d Si (t) = Si (t)

⎡
⎣bi (t) dt +

n∑
j=1

σi j (t) dWj (t)

⎤
⎦ , t ∈ [0, T]; Si (0) = si > 0,(2.2)

where bi (·) and σi j (·), the appreciation and volatility rates respectively, are scalar-valued,
Ft-progressively measurable stochastic processes with

∫ T

0

⎡
⎣ m∑

i=1

|bi (t)| +
m∑

i=1

n∑
j=1

|σi j (t)|2
⎤
⎦ dt < +∞, a.s.

Set the excess rate of return process

B(t) := (b1(t) − r (t), . . . , bm(t) − r (t))�,

and define the volatility matrix process σ (t) := (σi j (t))m×n . Basic assumptions imposed
on the market parameters throughout this paper are summarized as follows:

ASSUMPTION 2.1. There exists an Ft-progressively measurable, Rn-valued process θ0(·)
with Ee

1
2

∫ T
0 |θ0(t)|2dt < +∞ such that

σ (t)θ0(t) = B(t), a.s., a.e. t ∈ [0, T].

ASSUMPTION 2.2. There exist s2 ≥ s1 > 0 such that s1 ≤ S0(T) ≤ s2.

Assumption 2.1 is only slightly stronger than the standard no-arbitrage assumption
due to the additional Novikov condition; see Karatzas and Shreve (1998) for details.
Assumption 2.2 holds when the risk-free rate is bounded.
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Consider an agent, with an initial endowment x0 > 0 and an investment horizon [0, T],
whose total wealth at time t ≥ 0 is denoted by x(t). Assume that the trading of shares
takes place continuously in a self-financing fashion and there are no transaction costs.
Then x(·) satisfies (see, e.g., Karatzas and Shreve 1998)

dx(t) = [r (t)x(t) + B�(t)π (t)] dt + π (t)�σ (t) dW(t), t ∈ [0, T]; x(0) = x0,(2.3)

where πi (t), i = 1, 2 . . . , m, denotes the total market value of the agent’s wealth in the
i-th asset at time t. The process π (·) ≡ (π1(·), . . . , πm(·))� is called a portfolio if it is
Ft-progressively measurable with∫ T

0
|σ (t)�π (t)|2dt < +∞ and

∫ T

0
|B(t)�π (t) | dt < +∞, a.s.

and it is tame (i.e., the corresponding discounted wealth process, S0(t)−1x(t), is almost
surely bounded from below—although the bound may depend on π (·)). It is standard in
the continuous-time literature that a portfolio be required to be tame so as to, among
other things, exclude the notorious doubling strategy.

There may be other constraints on the portfolios specific to a given problem, such as
prohibition of shorting or bankruptcy. A portfolio is called admissible if it satisfies all
the given constraints. Let � be the set of all admissible portfolios. It is important to note
that � does not depend on the initial position x0. The agent evaluates each admissible
portfolio π (·) via a certain performance (or preference) measure, denoted by J(x0, π (·)).
The precise forms of J(x0, π (·)) are dictated by individual problems, and will be discussed
fully in the sequel. The objective of a portfolio selection problem is, for a given initial
endowment x0, to choose an optimal portfolio whose performance value achieves the
supremum of J(x0, π (·)) over �. Denote by v(x0) this supremum value.

This paper aims to introduce a very general portfolio choice formulation which in
particular covers both the neoclassical (utility maximization) and behavioral models. To
do so we need the following “minimal” assumption on the models we are able to include.

ASSUMPTION 2.3. For an initial position x0 and an admissible portfolio π (·), if x̂0 > x0

then there is an admissible portfolio π̂ (·) such that J(x̂0, π̂ (·)) > J(x0, π (·)).
The economic interpretation of this assumption is clear: with more initial budget the

agent will be able to do strictly better. One may appreciate that this is a very weak
assumption,6 and any portfolio model violating this would be abnormal. Indeed, all
the five concrete models to be presented in the next section satisfy this assumption; see
discussions at the end of Section 2.2.

2.2. Five Motivating Models

In this section we motivate our new portfolio choice formulation via five concrete
models. These models appear quite different in terms of their economical interpretations
and mathematical formulations; yet the commonalities among them will be explored,
leading to a universal framework and approach covering all of them (and more). In
the remainder of this section we assume that the underlying continuous-time market is
complete or equivalently the process θ0(·) in Assumption 2.1 is unique. The study of an
incomplete market will be deferred to Section 4. Define

6Indeed, it is easy to show that Assumption 2.3 is even weaker than the following very reasonable
assumption: v(x̂0) > v(x0) ∀x̂0 > x0.
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ρ(t) := exp
{

−
∫ t

0

[
r (s) + 1

2
|θ0(s)|2

]
ds −

∫ t

0
θ0(s)�dW(s)

}
,(2.4)

the pricing kernel or state density price process. Denote ρ := ρ(T). It is clear that under
Assumptions 2.1 and 2.2, 0 < ρ < +∞ a.s. and 0 < Eρ < +∞. Let

ρ̄ ≡ esssup ρ := sup{a ∈ R : P{ρ > a} > 0},
ρ ≡ essinf ρ := inf{a ∈ R : P{ρ < a} > 0}.

(2.5)

In view of the martingale approach, a portfolio choice problem in this economy boils
down to determining the optimal terminal wealth.

Let F be the set of cumulative distribution functions (CDFs hereafter) of all the lower
bounded random variables taking values on R, that is,

F = {F(·) : R → [0, 1], nondecreasing, right continuous,

F(a−) = 0 for some a ∈ R and F(+∞) = 1}.
The lower boundedness above corresponds to the required tameness of portfolios. For

any F(·) ∈ F, denote by F−1(·) its left-inverse, that is,

F−1(t) = inf{x ∈ R : F(x) ≥ t} = sup{x ∈ R : F(x) < t}, t ∈ [0, 1].

Let G := {F−1(·) : F(·) ∈ F} be the corresponding set of quantile functions, or

G = {G(·) : [0, 1] → R
+, nondecreasing, left continuous, G(0) = −∞, G(0+) > −∞},

where G(1) := G(1−).

Model 1: Expected Utility Maximization

Max
X

Eu(X)

subject to E[ρX] = x0, X ≥ 0, X is FT measurable,
(2.6)

where u(·) is a utility function, E[ρX] = x0 is the budget constraint, and X ≥ 0 is the
no-bankruptcy constraint (which may be absent in some variants of the model). This
is the classical utility model initiated by Samuelson (1969) and Merton (1969) with
extensive research thereafter. Under the concavity assumption on the utility function
(representing the agent risk-aversion) it is a simple exercise via a Lagrange technique to
solve the above optimization problem. As explained earlier the solution X∗ to this static
optimization problem is the optimal terminal cash flow that ought to be achieved. The
optimal portfolio will then be the one replicating X∗.

It is interesting to look more closely at the preference measure, Eu(X), in this model.
Recall for a random payoff X ≥ 0 its mean is

E[X] =
∫ +∞

0
x d FX(x),(2.7)

where FX(·) is the CDF of X , while

Eu(X) =
∫ +∞

0
u(x) d FX(x).(2.8)
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Hence, compared with the mean evaluation (2.7), the expected utility (2.8) essentially
applies a utility function to distort the payment outcomes when evaluating a random
payment. The way the distortion takes place reflects the agent attitude towards risk, which
is captured mathematically by the convexity and/or concavity of the utility function.

Model 2: Goal Reaching

Max
X

P(X ≥ b)

subject to E[ρX] = x0, X ≥ 0, X is FT measurable,
(2.9)

where b > 0 is the goal (level of wealth) intended to be reached by time T . This is
called the goal-reaching problem, which was proposed by Kulldorff (1993) and studied
extensively (including various extensions) by Browne (1999, 2000).

Economically, the goal-reaching model is different from the expected utility model;
see a detailed discussion in Browne (1999). Technically, it is not covered by the standard
utility model either, because

P(X ≥ b) =
∫ ∞

0
1{x≥b} d FX(x),(2.10)

and the indicator function 1{x≥b} is not concave. Browne (1999, 2000) primarily employs
the dynamic programming and HJB equation to solve the problem.

Model 3: Yaari’s Dual Theory

Max
X

∫ ∞

0
w(P(X > x)) dx

subject to E[ρX] = x0, X ≥ 0, X is FT measurable,

(2.11)

where w : [0, 1] → [0, 1] is a function called a probability distortion or weighting function
representing a subjective inflation/deflation of the true probability. It is a generally non-
linear, nondecreasing (so the distortion at least preserves the order of the probabilities)
function with w(0) = 0 and w(1) = 1 (so there is no distortion on sure events).

The preference measure in (2.11) was first put forward by Yaari (1987) as a “dual theory
of choice under risk” to the expected utility theory. If we write (via Fubini’s theorem)∫ ∞

0
w(P(X > x)) dx =

∫ ∞

0
xd[−w(1 − FX(x))],(2.12)

then we see that, in contrast to the expected utility (2.8) that distorts the payment, Yaari’s
measure (2.12) distorts the CDF of the payment instead. Yaari (1987), theorem 2, further
shows that the risk preference can also be captured by this distortion; specifically the
agent is risk-averse if and only if w is convex.

Yaari’s dual measure is one of the so-called nonexpected utilities which, as Yaari (1987)
argues, can explain a number of paradoxes associated with the expected utility theory,
although it leads to new “dual” paradoxes at the same time. It would be interesting
to explore what solutions this dual measure would generate in the context of portfolio
choice. There is a rather preliminary study, Hamada, Sherris, and van der Hoek (2006) on
a discrete-time portfolio choice model featuring Yaari’s measure, whereas the continuous-
time model (2.11) is new to our best knowledge. The technical difficulties in solving



PORTFOLIO CHOICE VIA QUANTILES 211

(2.11) include the nonconcavity of (2.12) in X due to the distortion w , and the time-
inconsistency of the measure because of (2.12) being essentially a nonlinear expectation
(also known as the Choquet expectation) under the capacity w ◦ P. In particular, time-
consistency is the foundation of the dynamic programming, the latter being the primary
approach in treating dynamic portfolio choice problems.

Model 4: Lopes’ SP/A Theory

Max
X

∫ ∞

0
w(P(X > x)) dx

subject to P(X ≥ A) ≥ α,

E[ρX] = x0, X ≥ 0, X is FT measurable,

(2.13)

where w is now called (in Lopes’ terminology) the decumulative weighting function in
the SP/A theory, A the aspiration level, and α the confidence level of the final payment
exceeding the aspiration. The SP/A theory, developed by Lopes (1987), is widely regarded
as an instantiation of the psychological/behavioral decision-making model, where SP
stands for a security–potential criterion and A for an aspiration criterion. Model (2.13)
looks similar to the Yaari model (2.11) except for the additional aspiration constraint;
nevertheless w in (2.13) actually has a more specific economical interpretation. Lopes
(1987) specifies w as a weighted combination of a convex function and a concave one,
where the convexity represents the security (risk-aversion) and the concavity captures the
potential (risk-seeking).

Lopes and Oden (1999) apply the SP/A theory to formulate and solve a single-period
portfolio selection model. However, it appears that the continuous-time counterpart
(2.13) has not been studied in the literature at all.

Model 5: Kahneman and Tversky’s Prospect Theory

Max
X

∫ ∞

0
w+(P(u+((X − B)+) > x)) dx

−
∫ ∞

0
w−(P(u−((X − B)−) > x)) dx

subject to E[ρX] = x0, X is FT measurable and a.s. bounded from below,

(2.14)

where B, an FT measurable random variable, is a reference point in wealth, u+(·) and
u−(·) are the utility and disutility functions of gains (excesses of wealth over B) and losses
(shortfalls from B) respectively, and w+ and w− are probability distortions on gains and
losses, respectively.

The preference measure in the above model was proposed and developed by Kahne-
man and Tversky, which is the most important component in the Nobel-prize-winning
prospect theory.7 There has been active research in incorporating prospect theory into
portfolio choice, albeit mainly restricted hitherto to the single-period case. Study on

7The prospect theory was first introduced in Kahneman and Tversky (1979), and later modified to the so-
called cumulative prospect theory in Tversky and Kahneman (1992) so as to be consistent with the first-order
stochastic dominance. On the other hand, in the works of Kahneman and Tversky the behavioral measure
is defined on prospects with discrete outcomes, while the one in (2.14) is a natural generalization that covers
both continuous and discrete outcomes.
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continuous-time models such as (2.14) has been started only recently; see Berkelaar,
Kouwenberg, and Post (2004), and Jin and Zhou (2008).

It remains to show that the standing Assumption 2.3 holds naturally for the above
models under reasonable conditions. For the utility model (2.6), the performance measure
is J(x0, π (·)) = Eu(x(T)) where x(T) := X is the terminal wealth under portfolio π (·)
starting from the initial endowment x(0) = x0. If x̂0 > x0, we then define

X̂ := x̂0 − x0

Eρ
+ X.

Clearly, X̂ is FT measurable, X̂ > X a.s. and E[ρ X̂] = x̂0. Now, assuming that u(·) is
strictly increasing and letting π̂ (·) be the replicating portfolio of X̂, we have J(x̂0, π̂ (·)) =
Eu(X̂) > Eu(X) = J(x0, π (·)).

The same argument applying to Yaari’s model (2.11) and Lopes’ model (2.13) yields
that Assumption 2.3 is valid for the two if w is strictly increasing. For the same reason,
the prospect model (2.14) satisfies the assumption if all w± and u± are strictly increasing.

The earlier argument, however, does not apply to the goal-reaching model (2.9) because
in general it could hold that P(X̂ ≥ b) = P(X ≥ b) even though X̂ > X a.s. We use a
different technique instead. Let J(x0, π (·)) = P(X ≥ b) where X is the terminal wealth
under portfolio π (·) starting from the initial endowment x(0) = x0. Consider x̂0 with
bE[ρ] > x̂0 > x0. (If bE[ρ] ≤ x̂0 then the corresponding optimal value, v(x̂0), is 1 which
is a trivial case.) Then P(X < b) > 0. Find an FT measurable set A ⊂ {X < b} such that
P(A) > 0 and bE[ρ1A] ≤ x̂0 − x0. Define X̂ := a1A + X1Ac where

a := x̂0 − E[ρX1Ac ]
E[ρ1A]

≥ x0 + bE[ρ1A] − E[ρX1Ac ]
E[ρ1A]

≥ b.

In fact the above a was chosen so that E[ρ X̂] = x̂0. Clearly X̂ ≥ 0 and

P(X̂ ≥ b) = P(X̂ ≥ b|A)P(A) + P(X̂ ≥ b|Ac)P(Ac) = P(A) + P(X ≥ b) > P(X ≥ b).

Therefore, Assumption 2.3 holds unconditionally for (2.9).

2.3. Formulation via Quantiles

Among the preceding five models, the last three involve nonexpected utilities due to
the probability distortions; hence the standard approaches such as convex duality and
dynamic programming fail to apply. The questions we are going to address are whether
we can solve the last three models, and whether in addition we can establish/develop a
unified framework/approach to cover/solve all the five models (and many others) at the
same time. We will show that the answers are positive if we take a different perspective
compared with the one taken for granted in expected utility maximization. A first and
key step to reach the answers is to find the commonalities among the models above.
Notice that all the preference measures in those models can be written in the following
general form:

C(X) :=
∫ ∞

−∞
u(x) d[w(FX(x))],(2.15)
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where u(·) and w : [0, 1] → [0, 1] are both nonlinear.8 In essence, (2.15) is a modified
mean of the cash flow X where both the cash flow and its probability distribution are
distorted.9 While C(X) appears to be a nonexpected measure mainly due to the presence
of w , by letting z = FX(x) in (2.15) we have (assuming that w is differentiable)

C(X) =
∫ 1

0
u
(
F−1

X (z)
)

d(w(z)) =
∫ 1

0
u
(
F−1

X (z)
)
w ′(z) dz = E[u(G(Z))w ′(Z)],(2.16)

where Z is any uniform random variable on (0, 1) (we write Z ∼ U(0, 1)) and G = F−1
X ,

the quantile function of X . Hence, by regarding G (a quantile) as the decision variable,
instead of X (a random variable), we recover linear expectation.10

Note that the law-invariant nature of the performance measure C(X) is essential in the
above treatment. Next, to have a complete quantile formulation, it remains to express the
budget constraint E[ρX] = x0, a constraint inherent to any continuous-time portfolio
choice model, in terms of also the quantile of X . An obstacle for doing this is that ρ

and X are two possibly correlated random variables, and the correlation is generally
unknown. In other words, E[ρX] is law-variant (in X). To get around we need to exploit
some “dual” property of the underlying optimization problem, subtly based upon the
minimal assumption introduced earlier, namely Assumption 2.3, along with the following
additional assumption on the pricing kernel ρ.

ASSUMPTION 2.4. ρ admits no atom.

This assumption will be in force hereafter. It is satisfied, in particular, when r (·) and θ (·)
are deterministic with

∫ T
0 |θ (t)|2 dt �= 0 (in which case ρ is a nondegenerate lognormal

random variable).
Denote by Fρ(·) the CDF of ρ and Zρ := 1 − Fρ(ρ). Because ρ is atom-less, Zρ ∼

U(0, 1) and we can express ρ in terms of Zρ : ρ = F−1
ρ (1 − Zρ) a.s. The following lemma,

derived in Jin and Zhou (2008) theorem B.1, is crucial.11

LEMMA 2.5. Suppose Assumption 2.4 holds. Then E[ρG(Zρ)] ≤ E[ρX] for any lower
bounded random variable X whose quantile is G. Furthermore, if E[ρG(Zρ)] < ∞, then the
inequality becomes equality if and only if X = G(Zρ), a.s.

Recall that E[ρX] is the t = 0 price of a future (t = T) random cash flow X . The
economic interpretation of this lemma is that one can always replace a random payment
X by Y := G(Zρ), which has the same probability law as X , yet with no greater (and
possibly smaller) cost. Notice this replacement would not change the preference measure
(2.16), including of course those of the aforementioned five models, due to the law-
invariance. Hence a dual argument yields that at an optimal solution X∗ it must hold that

8Strictly speaking, the preference measure of the prospect model, Model 5, is the difference between the
two terms of the form (2.15). As discussed later our approach here applies to Model 5 as well.

9General preference measures involving both utility functions and nonadditive probabilities have been
proposed in, for example, Quiggin (1982) and Schmeidler (1989), albeit for discrete probability spaces.

10Alternatively (but equivalently), we may take the random variable Y := G(Z) as the new decision
variable, and (2.16) reduces to the classical expected utility criterion under a new probability measure that
has a Radon–Nikodym density w ′(Z) with respect to P. Note that G(Z) has the same probability law as X ,
but in general G(Z) �= X as random variables.

11The essential ideas contained in Lemma 2.5 were first put forth in Dybvig (1988), theorems 2 and 3.
The exact form of the lemma needed for this paper was proved, with a different proof than Dybvig (1988),
in Jin and Zhou (2008).
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E[ρG∗(Zρ)] = E[ρX∗] where G∗ is the quantile of X∗. (Indeed, if y0 := E[ρG∗(Zρ)] <

E[ρX∗] =: x0, then G∗(Zρ) would achieve the same performance value with a strictly
smaller budget. By Assumption 2.3, the agent could strictly increase the performance
value with the original budget x0 > y0, hence contracting the optimality of X∗.) This, in
turn, leads to X∗ = G∗(Zρ), a.s. in view of Lemma 2.5.

The earlier argument shows that an optimal solution X∗ of all the models in this section,
or indeed any continuous-time model satisfying Assumptions 2.3 and 2.4, must be in the
form G∗(Zρ) where G∗ is a quantile and Zρ is a particular uniform random variable
Zρ = 1 − Fρ(ρ). In other words, to find an optimal solution we need only to search
among the random variables of the form G(Zρ) where G ∈ G. Because ρ = F−1

ρ (1 − Zρ)
a.s., we can replace the budget constraint E[ρX] = x0 by

E
[
F−1

ρ (1 − Zρ)G(Zρ)
] = x0.(2.17)

Now we are ready to formulate our general portfolio choice model via quantiles:

Max
G(·)

U(G(·)) = E
[
u(G(Zρ))w ′(Zρ)

]
subject to E

[
F−1

ρ (1 − Zρ)G(Zρ)
] = x0,

G(·) ∈ G ∩ M,

(2.18)

where Zρ = 1 − Fρ(ρ), G is the set of quantile functions of lower bounded random vari-
ables and M specifies some other constraints. For instance, the no-bankruptcy constraint
X ≥ 0 can be translated into M = {G(·) : G(0+) ≥ 0}.

Sometimes it is more convenient to consider the following integral version of (2.18):

Max
G(·)

U(G(·)) =
∫ 1

0
u(G(z))w ′(z) dz

subject to
∫ 1

0
F−1

ρ (1 − z)G(z) dz = x0.

G(·) ∈ G ∩ M.

(2.19)

We have demonstrated that the earlier formulation generalizes the five concrete models
presented in the previous section.12 In fact, it is general enough to cover many other
models such as the continuous-time Markowitz model,13 models explicitly involving
VaR, CVaR, or quantile functions in performance measures and/or constraints.

Finally, we reiterate that the earlier formulation depends on the market completeness
because it involves explicitly the pricing kernel via Zρ . The incomplete market case will
be dealt with in Section 4.

3. SOLUTIONS

In this section, we first outline the general solution scheme to solving (2.18) or (2.19) in
a complete market, and then illustrate the scheme by solving explicitly the goal-reaching

12To be precise, Model 5 is not directly covered by the earlier formulation because its objective is the
difference of two terms. However, a key step in solving Model 5, as carried out in Jin and Zhou (2008), is to
decompose the problem into two subproblems each of which is of the form (2.18).

13Assumption 2.3 holds for the Markowitz model if one is interested in only the nonsatiation portion of
the Markowitz efficient frontier.
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model and Yaari’s dual model.14 Notice that the results on Yaari’s model are completely
new to our best knowledge.

The general scheme starts with removing the budget constraint in (2.19) via a Lagrange
multiplier λ ∈ R and considering the following problem:

Max
G(·)

Uλ(G(·)) :=
∫ 1

0
u(G(z))w ′(z) dz − λ

(∫ 1

0
F−1

ρ (1 − z)G(z) dz − x0

)

subject to G(·) ∈ G ∩ M.

(3.1)

In solving the earlier problem one usually ignores the constraint, G(·) ∈ G ∩ M, in the
first instance, because in many cases the optimal solution of the resulting unconstrained
problem could be modified (without affecting the objective value) to satisfy this constraint
under some reasonable assumptions (see concrete examples later). For some cases such a
modification could be technically challenging; see for example the SP/A model tackled
in He and Zhou (2008). In other cases the constraint may need to be dealt with separately,
via techniques specific to each problem.

Once (3.1) is solved with an optimal solution G∗
λ(·), one then finds λ∗ ∈ R that binds

the original budget constraint, namely,∫ 1

0
F−1

ρ (1 − z)G∗
λ∗ (z) dz = x0.

The existence of such λ∗ can usually be obtained by examining the monotonicity and
continuity of f (λ) := ∫ 1

0 F−1
ρ (1 − z)G∗

λ(z) dz in λ. Moreover, if the strict monotonicity
can be established, then λ∗ is unique. See the examples later.

Finally, G∗(·) := G∗
λ∗ (·) can be proved to be the optimal solution to (2.18) or (2.19).

This is shown in the following way. Let v(x0) and vλ(x0) be respectively the optimal value
of (2.19) and (3.1). By their very definitions we have the following weak duality

v(x0) ≤ inf
λ∈R

vλ(x0) ∀x0 ∈ R.

However,

v(x0) ≤ inf
λ∈R

vλ(x0) ≤ vλ∗ (x0) = Uλ∗ (G∗(·)) = U(G∗(·)) ≤ v(x0).

This implies that G∗(·) is optimal to (2.19) (and the strong duality v(x0) = infλ∈R vλ(x0)
holds).

The uniqueness of the optimal solution can also be derived from that of (3.1). Indeed,
suppose we have established the uniqueness of optimal solution to (3.1) for λ = λ∗, and
λ∗ is such that G∗

λ∗ (·) binds the budget constraint. Then G∗
λ∗ (·) is the unique optimal

solution to (2.18). To see this, assume there exists another optimal solution G̃∗(·) to
(2.18). Then

Uλ∗ (G̃∗(·)) ≤ Uλ∗ (G∗
λ∗ (·)) = v(x0) = U(G̃∗(·)) ≤ Uλ∗ (G̃∗(·)).

Hence, by the uniqueness of optimal solution to (3.1), we conclude G̃∗(·) = G∗
λ∗ (·).

14Among the five models presented earlier, the expected utility model has been well studied, and the
prospect model has been solved quite completely in Jin and Zhou (2008). The SP/A model can be solved by
the scheme suggested here, which however would involve substantial technicalities among other subtle issues
unique to this model. We hence decide, in order not to distract the main focus of this paper, to investigate
the SP/A model in a separate paper He and Zhou (2008).
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Finally, once (2.18) or (2.19) has been solved with the optimal solution G∗(·), the
corresponding optimal terminal cash flow can be recovered by

X∗ = G∗(Zρ) ≡ G∗(1 − Fρ(ρ)).(3.2)

The earlier expression shows that the optimal terminal wealth of the model (2.18) or
(2.19) is anticomonotonic with the pricing kernel ρ in a complete market. This underlines
one of the most important, common properties of the quantile model (which covers a
wide range of portfolio selection problems from neoclassical to behavioral). It will also
play a significant role in treating incomplete markets and in establishing the mutual fund
theorem; see the next two sections.

We remark that while the above solution scheme is outlined under λ ∈ R, it extends
readily to the situation where λ is restricted to a smaller subset, typically the positive axis
R+\{0};15 see examples later.

Now we apply this general scheme to two concrete models presented earlier. Recall we
are dealing with a complete market for now. Consequently, we assume the following on
the market in Section 2.1 throughout the remainder of this section:

ASSUMPTION 3.1. m = n and σ (t) is invertible a.s., a.e. t ∈ [0, T].

3.1. Goal-Reaching Model

Consider the goal-reaching problem (2.9). Browne (1999) has solved this problem, as-
suming that the investment opportunity set is deterministic, using rather ad hoc method
based on the HJB equation and the associated verification theorem. Here, without as-
suming a deterministic investment opportunity set, we demonstrate that our quantile
formulation will lead to a rather simple approach.

First, it is easy to see that if x0 ≥ bE[ρ], then a trivial optimal solution is X∗ = b and the
optimal value is 1. Therefore, we confine us to the only interesting case 0 < x0 < bE[ρ],
which means that the goal is at least more ambitious than the risk-free payoff. Notice

P(X ≥ b) =
∫

R

1{x≥b} d FX(x) =
∫ 1

0
1{G(z)≥b} dz,

and X ≥ 0 is equivalent to G(0+) ≥ 0. Hence problem (2.9) can be formulated in the
following quantile version:

Max
G(·)

U(G(·)) =
∫ 1

0
1{G(z)≥b} dz

subject to
∫ 1

0
F−1

ρ (1 − z)G(z) dz = x0,

G(·) ∈ G, G(0+) ≥ 0.

(3.3)

This, certainly, specializes the general model (2.19) with a nonconvex/nonconcave “util-
ity” function.

15This is because, due to Assumption 2.3, the equality constraint in (2.19) could be revised to the
less-or-equal inequality constraint without essentially changing the model.
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Introducing the Lagrange multiplier λ > 0 (as discussed earlier as well as evident from
below in this case we need only to consider positive multipliers), we have the following
family of problems

Max
G(·)

Uλ(G(·)) :=
∫ 1

0

[
1{G(z)≥b} − λF−1

ρ (1 − z)G(z)
]

dz + λx0

Subject to G(·) ∈ G, G(0+) ≥ 0.

(3.4)

Ignore the constraints for now, and consider the pointwise maximization of the
integrand above in the argument x = G(z): maxx≥0[1{x≥b} − λF−1

ρ (1 − z)x]. It is an
easy exercise to show that its optimal value is max{1 − λF−1

ρ (1 − z)b, 0} attained
at x∗ = b1{1−λF−1

ρ (1−z)b≥0}. Moreover, such an optimal solution is unique whenever
1 − λF−1

ρ (1 − z)b > 0. Thus, we define

G∗
λ(z) := b1{1−λF−1

ρ (1−z)b≥0}, 0 < z < 1,

which is nondecreasing in z. It may not be left continuous; however, the value of Uλ(G(·))
is unchanged if G(·) is altered only at countable points on [0, 1]. Hence we can take the
left-continuous modification of G∗

λ(·) to be the optimal solution of (3.4), and the optimal
solution is unique up to a null Lebesgue measure. On the other hand, the modification
above would generate the same (in the sense of a.s.) random payment (3.2) because ρ has
no atom. So the above G∗

λ(·) can be regarded as the optimal solution to (3.4).
Now we are to find λ∗ > 0 binding the budget constraint so as to conclude that G∗

λ∗ (·)
is the optimal solution to (3.3). To this end, let

f (λ) : =
∫ 1

0
F−1

ρ (1 − z)G∗
λ(z) dz

= b
∫ 1

0
F−1

ρ (1 − z)1{F−1
ρ (1−z)≤1/(λb)} dz

= b
∫ +∞

0
x1{x≤1/(λb)} d Fρ(x)

= bE
[
ρ1{ρ≤1/(λb)}

]
, λ > 0.

It is easy to see that f (·) is nonincreasing, continuous on (0, +∞), with limλ↓0 f (λ) =
bE[ρ] and limλ↑+∞ f (λ) = 0. Therefore, for any 0 < x0 < bE[ρ], there exists λ∗ > 0 such
that f (λ∗) = x0 or the budget constraint holds. As per discussed in the general solution
scheme the corresponding G∗

λ∗ (·) solves (3.3) and the terminal payment X∗ = G∗
λ∗ (1 −

Fρ(ρ)) = b1{ρ≤c∗}, where c∗ ≡ (λ∗b)−1 is such that the initial budget constraint binds,
solves the original problem (2.9). Finally, the optimal solution is unique and the optimal
value is P(X∗ ≥ b) = P(ρ ≤ c∗) = Fρ(c∗).

To summarize, we have

THEOREM 3.2. Assume that 0 < x0 < bE[ρ]. Then the unique solution to the goal-
reaching problem (2.9) is X∗ = b1{ρ≤c∗} where c∗ > 0 is the one such that E[ρX∗] = x0.
The optimal value is Fρ(c∗).

The solution above certainly reduces to that of Browne (1999) when the investment
opportunity set is deterministic. It is, however, important to highlight the advantages
of our approach. First, the approach in Browne (1999) is rather ad hoc, in that a value
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function of the problem is conjectured and then verified to be the solution of the HJB
equation, without an explanation as to how the function was come up with in the first
place. Here we derive the solution (without having to know its form a priori) based on the
quantile approach. Thus our method could be easily adapted to more general settings.
Second, the HJB equation fails to work with a stochastic investment opportunity set,16

which however can be treated by our approach here. Finally, our result can even be
extended to an incomplete market with a deterministic opportunity set; see the next
section for details.

Föllmer and Leukert (1999) and Spivak and Cvitanić (1999) extend the goal-achieving
problem to the context of hedging contingent claims, allowing more general settings
involving random goals, stochastic opportunity sets, and/or continuous semimartingales
as asset prices. The approaches they develop (Neyman–Pearson lemma and martingale,
respectively) are again somewhat specific to the probability maximization problems. In
contrast, the quantile approach of this paper is general enough to cover many models
beyond probability maximization.17

We end this section by noting an interesting feature of the solution derived. The
optimal terminal wealth profile for the goal-reaching is a digital option.18 Optimally the
agent either obtains a fixed payment upon a “winning event” or else loses all the money
on a “losing event” at the end of the investment horizon. Whether the world ends up
with a winning event is completely dictated by the pricing kernel not exceeding a critical
level c∗. Moreover, because X∗ = b1{ρ≤c∗}, the payoff b in case of a winning is fixed while
the winning probability, P(ρ ≤ c∗), monotonically decreases with b/x0, a quantity that
measures the aspiration (or indeed the greed) of the agent. This is seen by

E[ρ1{ρ≤c∗}] = (b/x0)−1.

From a different perspective, given the initial wealth x0, there is a tradeoff between the
winning amount b and the winning chance represented by c∗, because

bE[ρ1{ρ≤c∗}] = x0.

So the higher goal the agent sets the less chance the goal will be reached, and vice
versa. This in turn suggests that, although the notion of risk preference is not explicitly
presented in the goal-reaching model, it is implied in the following sense: the more risk-
averse the agent is, the more weight should be put on the winning chance and the less
weight on the winning amount. More on this in the next section.

3.2. Yaari’s Dual Model

In this section we turn to the portfolio choice model (2.11) under Yaari’s dual theory.
We assume x0 > 0 to exclude a trivial case. In view of (2.12), (2.15), and (2.16), the

16In this case one would have to involve the so-called backward stochastic partial differential equation
in formulating the corresponding HJB equation, which is in general very complicated and extremely hard
to deal with.

17In this paper, the goal b in (2.9) is assumed to be deterministic, although it is not essential. If b is
random, then by considering a new decision variable Y = X/b one could mathematically recover (2.9) with
b = 1. Of course, some subtle technical consideration is required if b is not almost surely strictly positive;
we leave the details to the interested readers.

18It is an easy problem to replicate a digital option to obtain the optimal trading strategy; see, for example,
Appendix E in Jin and Zhou (2008).
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problem has the following quantile formulation:

Max
G(·)

U(G(·)) =
∫ 1

0
G(z)w ′(1 − z) dz

subject to
∫ 1

0
F−1

ρ (1 − z)G(z) dz = x0,

G(·) ∈ G, G(0+) ≥ 0.

(3.5)

We first impose the following assumption on the distortion function w(·).

ASSUMPTION 3.3. w(·) : [0, 1] → [0, 1] is continuous and strictly increasing with w(0) =
0, w(1) = 1. Furthermore, w(·) is continuously differentiable on (0, 1).

Other than the differentiability which is purely technical, the economical meaning of
the assumption is clear.

Before we attempt to solve (2.11) or (3.5), notice the preference measure is linear in the
payment; see (2.12). Hence its value can be possibly made as large as one wants. Define by
v(x0) the optimal value of (3.5). We say the model is ill posed if v(x0) = +∞; otherwise
it is well posed. An ill-posed model is one where the incentives implied by the model
are wrong, and in the context of portfolio choice an ill-posed model usually leads to trad-
ing strategies that take the greatest possible leverages (hence the agent is most aggressive);
see Jin and Zhou (2008) for a detailed discussion and treatment of the ill-posedness. A
well-posed Yaari’s model requires some consistency between the probability distortion
and the market. This is made precise in the following theorem.

THEOREM 3.4. Under Assumption 3.3, model (3.5) is ill posed if lim infz↓0
w ′(z)

F−1
ρ (z) = +∞,

and well posed if lim supz↓0
w ′(z)

F−1
ρ (z) < +∞.

Proof . If lim infz↓0
w ′(z)

F−1
ρ (z) = +∞, then for any n > 0, there exists z1 ∈ (0, 1) such that

w ′(z) ≥ n
x0

F−1
ρ (z) for any z ∈ (0, z1]. Construct G(·) ∈ G in the following way: it is 0 on

[0, 1 − z1] and is a constant b on (1 − z1, 1]. Because ρ > 0, we have F−1
ρ (z) > 0 ∀z > 0.

Hence we can select b such that
∫ 1

0 G(z)F−1
ρ (1 − z) dz = x0 > 0. Consequently, we have

∫ 1

0
G(z)w ′(1 − z) dz ≥ n

x0

∫ 1

0
G(z)F−1

ρ (1 − z) dz = n.

This indicates that v(x0) = +∞ or the underlying model is ill posed.
If lim supz↓0

w ′(z)
F−1

ρ (z) < +∞, then there exists K1 > 0 and 0 < z1 < 1 such that w ′(z) ≤
K1 F−1

ρ (z) for any z ∈ (0, z1]. Now for any feasible G(·) to problem (3.5), we have

G(1 − z1) ≤

∫ 1

1−z1

G(z)F−1
ρ (1 − z) dz

∫ 1

1−z1

F−1
ρ (1 − z) dz

≤ x0∫ 1

1−z1

F−1
ρ (1 − z) dz

=: K2 < +∞.
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Thus,

U(G(·)) =
∫ 1−z1

0
G(z)w ′(1 − z) dz +

∫ 1

1−z1

G(z)w ′(1 − z) dz

≤ G(1 − z1)
∫ 1−z1

0
w ′(1 − z) dz + K1

∫ 1

1−z1

G(z)F−1
ρ (1 − z) dz

≤ K2 + K1x0.

This shows that v(x0) ≤ K2 + K1x0 < +∞ and the model is well posed. �

If w is concave and differentiable, and ρ = 0, then

lim inf
z↓0

w ′(z)
F−1

ρ (z)
≥ lim inf

z↓0

w ′(1/2)
F−1

ρ (z)
= +∞.

So a concave distortion leads to an ill-posed problem or the agent is most aggressive in
taking the risk. However, this is perfectly consistent with Yaari’s theory that a concave
distortion is equivalent to the risk-seeking preference.

Next, we apply the Lagrange method to solve (3.5), for which we introduce an addi-
tional assumption in terms of a function M(z) := w ′(1−z)

F−1
ρ (1−z) , 0 < z < 1.

ASSUMPTION 3.5. M(·) is continuous on (0, 1), and there exists z0 ∈ (0, 1) such that M(·)
is strictly increasing on (0, z0) and strictly decreasing on (z0, 1).

Assumption 3.5 can be weakened to the one where M(·) may have a finite number
of monotonic pieces. However, such a generalization only incurs notational complexity
in the approach below rather than any essential difference. On the other hand, we will
show later in this section that Assumption 3.5 holds naturally for some common and
interesting cases. Finally note that, in view of Theorem 3.4, problem (3.5) is well posed
under this assumption.

Consider the following family of problems with the parameter λ > 0 being the La-
grange multiplier:

Max
G(·)

Uλ(G(·)) :=
∫ 1

0
G(z)

[
w ′(1 − z) − λF−1

ρ (1 − z)
]

dz + λx0

subject to G(·) ∈ G, G(0+) ≥ 0.

(3.6)

Denote by vλ(x0) the optimal value of (3.6). The following proposition solves (3.6)
completely.

PROPOSITION 3.6. Let Assumptions 3.3–3.5 hold. Then there is the unique root λ∗ > 0
of the following function on (0, +∞):

h(λ) :=
∫ 1

0

[
w ′(1 − z) − λF−1

ρ (1 − z)
]
+ dz −

∫ 1

z0

[
w ′(1 − z) − λF−1

ρ (1 − z)
]
− dz.

Moreover,

(i) If 0 < λ < λ∗, then vλ(x0) = +∞.
(ii) If λ > λ∗, then vλ(x0) = λx0 and the unique optimal solution to (3.6) is G∗

λ(·) ≡ 0.



PORTFOLIO CHOICE VIA QUANTILES 221

(iii) If λ = λ∗, then vλ(x0) = λx0, and the set of optimal solutions to (3.6) is {G(·) ∈ G :
G(z) = b1{z(λ∗)<z≤1}, b ≥ 0} where 0 < z(λ∗) ≤ z0 is the one satisfying M(z(λ∗)) =
λ∗.

Proof . Rewrite, for each λ > 0,

Uλ(G(·)) =
∫ 1

0
G(z)F−1

ρ (1 − z) fλ(z) dz + λx0

where fλ(z) := M(z) − λ. If fλ(z) < 0 ∀z ∈ (0, 1) then the obvious unique optimal G∗
λ(·) ≡

0 which leads to (ii). Hence we assume that fλ(z) ≥ 0 for at least one z ∈ (0, 1). Let
z(λ) := inf{z ∈ (0, z0] : fλ(z) ≥ 0} with the convention that inf ∅ := z0. A crucial step in
what follows is to show that the optimal solution to (3.6) must be attained in a subclass
of G, consisting of certain step functions, defined as

Gλ := {G(·) ∈ G : G(z) = b1{z(λ)<z≤1}, b ≥ 0}.

It is clear that vλ(x0) ≥ supG(·)∈Gλ
Uλ(G(·)). To show the opposite inequality, consider

z̄(λ) := inf{z ∈ [z0, 1) : fλ(z) < 0} with inf ∅ := 1. By virtue of Assumption 3.5, fλ(·) is
positive on (z(λ), z̄(λ)) and negative on (0, z(λ)) ∪ (z̄(λ), 1). Now, for any feasible G(·) to
(3.6), we have

Uλ(G(·)) =
∫ 1

0
G(z)F−1

ρ (1 − z) fλ(z) dz + λx0

=
∫ z(λ)

0
G(z)F−1

ρ (1 − z) fλ(z) dz

+
∫ z̄(λ)

z(λ)
G(z)F−1

ρ (1 − z) fλ(z) dz +
∫ 1

z̄(λ)
G(z)F−1

ρ (1 − z) fλ(z) dz + λx0

≤ α

∫ z̄(λ)

z(λ)
F−1

ρ (1 − z) fλ(z) dz + α

∫ 1

z̄(λ)
F−1

ρ (1 − z) fλ(z) dz + λx0

≤ sup
g(·)∈Gλ

Uλ(g(·)),

where α := limz↓z̄(λ) G(z). The first inequality above becomes equality if and only if
G(·) = α1{z(λ)<z≤1}. Therefore, if G∗(·) is optimal to (3.6), then G∗(·) ∈ Gλ.

On the other hand, a simple exercise shows that

h(λ) ≡
∫ 1

z(λ)

[
w ′(1 − z) − λF−1

ρ (1 − z)
]

dz.

Clearly, h(·) is continuous and strictly decreasing on (0, +∞) with limλ↓0 h(λ) =
1, limλ↑∞ h(λ) = −∞. So h(λ) admits a unique root λ∗ > 0. Now,

vλ(x0) = sup
G(·)∈Gλ

Uλ(G(·)) = λx0 + sup
b≥0

[bh(λ)] = λx0 + h(λ) sup
b≥0

b.

Because h(λ) is positive when λ < λ∗, negative when λ > λ∗, and identical to 0 when
λ = λ∗, the desired results (i)–(iii) follow immediately. �

Now we are ready to give the complete solution to (2.11) or equivalently (3.5).
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THEOREM 3.7. Suppose Assumptions 3.3 and 3.5 hold, and let λ∗ be the one in Proposition
3.6. Then

(i) The strong duality holds, that is, v(x0) = infλ>0 vλ(x0) = λ∗x0.
(ii) X∗ = b∗1{ρ≤c} is the unique optimal solution to (2.11) where c is the unique root of

the following function

ϕ(x) := xw(Fρ(x)) − w ′(Fρ(x))
∫ x

0
sd Fρ(s)(3.7)

on (F−1
ρ (1 − z0), ρ) and b∗ > 0 is the one binding the initial budget constraint, that

is, E[ρX∗] = x0.

Proof . We clearly have the weak duality: v(x0) ≤ infλ>0 vλ(x0) = λ∗x0 where the equal-
ity is due to Proposition 3.6. Now, take G∗(z) = b∗1{z(λ∗)<z≤1}, 0 ≤ z ≤ 1, such that∫ 1

0 G∗(z)F−1
ρ (1 − z) dz = x0. Then v(x0) ≥ U(G∗(·)) = λ∗x0 where the equality is again

by Proposition 3.6. This proves the strong duality and, moreover, G∗(·) is optimal to
(3.5).

If there is another optimal solution G̃∗(·) to (3.5), then
∫ 1

0 G̃∗(z)F−1
ρ (1 − z) dz = x0

and G̃∗(·) is optimal to (3.6) with the multiplier λ∗. Proposition 3.6-(iii) then implies that
G̃∗(·) ∈ Gλ∗ and consequently G̃∗(·) = G∗(·). This proves the uniqueness of the optimal
solution to (3.5).

Next we recover the optimal terminal payoff via (3.2):

X∗ = b∗1{z(λ∗)<1−Fρ (ρ)≤1} = b∗1{ρ≤c},

where c := F−1
ρ (1 − z(λ∗)).

It remains to show that the above c is the unique root of ϕ(·) defined in (3.7). Re-
calling h(λ) = ∫ 1

z(λ)[w
′(1 − z) − λF−1

ρ (1 − z)] dz and λ = M(z(λ)) when 0 < z(λ) ≤ z0, we
conclude that z(λ∗) is the unique root of the following function (in y)∫ 1

y
w ′(1 − z) dz − M(y)

∫ 1

y
F−1

ρ (1 − z) dz ≡ w(1 − y) − M(y)
∫ 1

y
F−1

ρ (1 − z) dz.

A change of integrand variable s = F−1
ρ (1 − z) in evaluating the integral above reveals

immediately that c = F−1
ρ (1 − z(λ∗)) is the unique root of ϕ defined on the interval

(F−1
ρ (1 − z0), ρ). The proof is completed. �
The following example first shows the validity of Assumption 3.5 for a broad and inter-

esting class of distortion functions and pricing kernels, and then gives the corresponding
optimal solution to Yaari’s model.

EXAMPLE 3.8. Let ρ follow lognormal distribution,19 that is, Fρ(x) = �( ln x−μ

σ
) for

some μ ∈ R, σ > 0 where �(·) is the CDF of the standard normal distribution. Take
w(z) = zγ for some γ > 1; so w(·) is convex and reflects the risk aversion of the in-
vestor according to Yaari’s theory. We now verify Assumption 3.5 or, equivalently, the
monotonicity of

f (x) := w ′(Fρ(x))
x

=
γ

[
�

(
ln x − μ

σ

)]γ−1

x
, x > 0.

19This covers, for example, the case with a deterministic investment opportunity set.
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A calculation shows

f ′(x) =
γ

[
�

(
ln x − μ

σ

)]γ−2

x2
f1

(
ln x − μ

σ

)

where

f1(y) := γ − 1
σ

φ(y) − �(y)

and φ(·) is the density function of the standard normal distribution. Again taking deriva-
tive on f1(y), we have

f ′
1(y) = −φ(y)

(
1 + γ − 1

σ
y
)

.

Therefore, f1 takes its maximum at y1 = − σ
γ−1 < 0, strictly increases on (−∞, y1), and

strictly decreases on (y1, +∞). Moreover,

f1(y1) = −
[
� (y1) + 1

y1
φ (y1)

]
= −

[
1 − � (−y1) − 1

−y1
φ(−y1)

]
> 0.

On the other hand, we have

f1(−∞) = 0, f1(+∞) = −1 < 0.

Hence f1(·) has a unique root y2 such that f1(y) > 0 on (−∞, y2) and f1(y) < 0 on
(y2, +∞). Furthermore y2 > y1 = − σ

γ−1 . Let ρ0 := exp(σ y2 + μ) > exp(μ − σ 2

γ−1 ) and
z0 := 1 − Fρ(ρ0) = 1 − �(y2). Then Assumption 3.5 holds.

The function ϕ(·) defined in Theorem 3.7 is

ϕ(x) =
[
�

(
ln x − μ

σ

)]γ−1 [
x�

(
ln x − μ

σ

)
− γ eμ+ σ2

2 �

(
ln x − μ

σ
− σ

)]
.

This function has a unique root c on (ρ0, γ exp(μ + σ 2

2 )). Therefore, the optimal solution
is given as X∗ = b∗1{ρ≤c} with E[ρX∗] = x0.

As with the goal-reaching model, it turns out that the optimal solution to Yaari’s
model has the same digital or “win-or-lose-all” structure.20 However, there are subtle
differences between the two models. In the goal-reaching model, the winning payoff b

20As discussed in Madan and Zhou (2008, private communication), the structure of digital claims
being optimal is arguably not well formed and appears to be an artificial consequence of the problem
formulations—in particular the linearity in both preferences and constraints—than a real structural prop-
erty. Here both the goal-reaching model and the Yaari model have linear payment in their preference measures
(Yaari’s criterion only distorts the probability and not the payment), which is the essential economic reason
behind the digital solutions. A more plausible optimal claim is what we call a gambling strategy, that is, it is
a known claim X in certain states of the world and another claim Y otherwise, and X and Y usually have
distinct economic interpretations. So people gamble on the occurrence of the former states (the good states).
The prospect model Jin and Zhou (2008) has exactly such an optimal structure where X is the gain and
Y the loss. See also He and Zhou (2008) for the SP/A model where a utility function is applied to distort
the payment in addition to the probability distortion. A digital option is certainly a special case and, more
importantly, an approximation of the general form. We stress that the general quantile model formulated in
this paper has rich optimal structures; it just so happens that the two models demonstrated here have the
digital structure.
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is exogenously chosen by the agent while the winning chance is endogenously implied
by the model, the latter being affected by the initial wealth x0 (or more precisely, by
the aspiration level b/x0). In Yaari’s model, X∗ = b∗1{ρ≤c}, so both the winning chance
and the winning amount are endogenous. In particular, c is completely determined by
the market and the agent risk preference; see (3.7). In other words there is a cap on the
winning chance regardless of the initial wealth whereas the winning payoff b∗ depends
linearly on the initial wealth.

As Yaari (1987) argues, risk preference is explicitly present and reflected by the prob-
ability distortion w in his dual criterion. Now let us examine how w would affect the
winning chance represented by c, and whether Yaari’s model is consistent with the notion
(as discussed earlier) that a more risk-averse agent would put more weight on the winning
chance and less weight on the winning payoff.

Recall that in the proof of Theorem 3.7, we have proved that z := 1 − Fρ(c) is the
unique root of the following function

g(y) := w(1 − y) − M(y)
∫ 1

y
F−1

ρ (1 − s) ds

on (0, z0). Noting g′(y) = −M′(y)
∫ 1

y F−1
ρ (1 − s) ds along with Assumption 3.5, g(·)

strictly decreases on (0, z0) and strictly increases on (z0, 1). Consequently, g(y) > 0 on
(0, z) and g(y) < 0 on (z, 1). Rewrite g(·) as

g(y) = w ′(1 − y)

⎡
⎢⎢⎢⎣ w(1 − y)

w ′(1 − y)
−

∫ 1

y
F−1

ρ (1 − s) ds

F−1
ρ (1 − y)

⎤
⎥⎥⎥⎦ .

Suppose now we have two distortion functions, w1(·) and w2(·), both satisfying Assump-
tions 3.3 and 3.5, such that

w ′
1(1 − y)

w1(1 − y)
≤ w ′

2(1 − y)
w2(1 − y)

.(3.8)

The corresponding functions g(·), ϕ(·) and the quantities z and c are now affixed with
a subscript i = 1, 2 to indicate the correspondence to the two distortions wi , i = 1, 2.
Then we have

0 = g1(z1) ≥ w ′
1(1 − z1)

⎡
⎢⎢⎢⎣w2(1 − z1)

w ′
2(1 − z1)

−

∫ 1

z1

F−1
ρ (1 − s) ds

F−1
ρ (z1)

⎤
⎥⎥⎥⎦ .

This implies g2(z1) ≤ 0 and, consequently, z1 ≥ z2 or equivalently, c1 ≤ c2. If the inequal-
ity in (3.8) is strict, so are all the subsequent inequalities above. If we accept that in the
tradeoff between the winning chance and the winning amount, a risk-averse agent favors
the former, then the above analysis shows that the index w ′(z)

w(z) can be used to measure
the degree of “risk-aversion” in Yaari’s model, that is, the greater the index the higher
winning chance the agent wishes to achieve. We remark that in Machina (1982), theorem
4-(ii), based on the notion of risk aversion introduced by Rothschild and Stiglitz (1970),
it is shown that the risk aversion levels of different preference functionals can be ranked
according to a criterion. It is easy to show that the criterion in the current Yaari setting
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is exactly the Arrow–Pratt index w ′′(z)
w ′(z) . Here, we have suggested a different risk aversion

index as implied by the Yaari portfolio choice model.21

4. INCOMPLETE MARKET

In this section, we discuss the incomplete market case. A crucial advantage with a
complete market is that there is a unique pricing kernel ρ; so one can turn a dynamic
portfolio choice problem into a static one in terms of the terminal cash flow. Once the
optimal terminal wealth is derived the corresponding portfolio is nothing else than the
one to replicate it. With an incomplete market, on the other hand, one needs to specify
the set of terminal cash flows that are replicable (attainable) before finding an optimal
terminal wealth position.22

We take the continuous-time market formulated in Section 2.1. Now the dimension of
the Brownian motion, n, is not necessarily the same as the number of stocks, m. Moreover,
there is an explicit constraint on portfolios

π (t) ∈ K, a.s., a.e. t ∈ [0, T],(4.1)

where K ⊂ Rm is a given closed convex cone.23 In addition to achieving more generality,
including this constraint will also be useful in proving the mutual fund theorem in the
next section.

An FT measurable contingent claim (random variable) ξ is called attainable or repli-
cable if there exists an initial endowment x ∈ R and an admissible portfolio satisfying
(4.1) whose terminal wealth is x(T) = ξ . In the following, we identify a set of attainable
contingent claims. To this end, we introduce the following.

Let K∗ be the dual cone of K, that is,

K∗ := {x ∈ R
m : x · y ≥ 0 for all y ∈ K}.

Define the set of Ft-progressively measurable, Rn-valued processes:

� := {θ (·) : σ (t)θ (t) − B(t) ∈ K∗, a.s., a.e., t ∈ [0, T] with Ee
1
2

∫ T
0 |θ (t)|2dt < +∞}.

Assumption 2.1 implies that � is nonempty, and it is easy to see that � is convex. For
any θ (·) ∈ �, define a pricing kernel process

ρθ (t) := exp
{
−

∫ t

0

[
r (s) + 1

2
|θ (s)|2

]
ds −

∫ t

0
θ (s)�dW(s)

}
,(4.2)

and call ρθ := ρθ (T) a pricing kernel. Notice in an incomplete market there could be
many pricing kernels.

Introduce the notation A(K) := {Ax : x ∈ K} for any n × m matrix A. Clearly, A(K)
is a convex cone. We assume that

21In the case of a power distortion function, that is, w(z) = zγ , γ > 1, these two indices are indeed
consistent in ordering the risk aversion level.

22The discussion in this section follows standard lines in dealing with incomplete markets in the
continuous-time portfolio selection literature. The main finding is that this approach turns out to work
well within the quantile framework too.

23A typical example is the so-called no-shorting constraint. Indeed, even though m = n and σ (t) is
uniformly nondegenerate, the presence of such a portfolio constraint renders an incomplete market.
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ASSUMPTION 4.1. σ (t)�(K) is closed, a.s., a.e. t ∈ [0, T].

Generally speaking, A(K) may not be closed even if K is a closed convex cone. However,
if rank(A) = n, then A(K) is closed for any closed convex cone K. If K = {y : By ≥ 0}
for some matrix B, then A(K) is closed for any A. Therefore, Assumption 4.1 covers some
interesting cases such as the no-shorting constraint.

The following is a classical result.

PROPOSITION 4.2. Suppose Assumptions 2.1 and 4.1 hold. Let ξ be an FT measurable
random variable such that S0(T)−1ξ is bounded from below. If there exists θ̂ (·) ∈ � such
that

x := E[ρθ̂ ξ ] = sup
θ∈�

E[ρθξ ] < +∞,

then ξ is attainable with the initial wealth x.

If there is no cone constraint, that is, K = Rm, then Proposition 4.2 is exactly the
classical result for incomplete markets; see, for example, theorem 8 in Jacka (1992). In
the presence of constraints, Karatzas and Shreve (1998) deal with the case of general
closed convex constraints in complete market. Föllmer and Kramkov (1997) consider a
general market via optional decompositions. Proposition 4.2 is a special case of the results
in Föllmer and Kramkov (1997). Meanwhile, Assumption 4.1 is related to Assumption
3.1 in Föllmer and Kramkov (1997).

Proposition 4.2 characterizes the attainability of a contingent claim ξ by an optimiza-
tion problem

max
θ∈�

E[ρθξ ].(4.3)

If this problem is solved by some θ̂ ∈ �, then ξ is attainable. However, in general θ̂

depends on ξ and there is no common θ̂ for all the tame claims. This would cause a major
problem to the continuous-time portfolio model and our quantile approach, because
in this case the constraint x0 = E[ρθ̂ ξ ] = supθ∈� E[ρθξ ] has essentially infinitely many
constraints and it remains an open problem as to how to formulate the quantile model
accordingly. However, if the investment opportunity set is deterministic, then it is possible
to select a common θ̂ among a certain set (to be specified below) of contingent claims, in
which case the quantile model can be formulated as in the complete market case.

We now introduce

ASSUMPTION 4.3. r (·), B(·), σ (·) are deterministic.

Denote by �(t) := {θ : σ (t)θ − B(t) ∈ K∗}, 0 ≤ t ≤ T. Under Assumption 4.3, define

θ̂ (t) := argmin
θ∈�(t)

|θ |2.(4.4)

It is clear that θ̂ (·) is uniquely defined and deterministic. Furthermore, via the measurable
selection theorem, θ̂ (·) is measurable. Also, by Assumption 2.1 and the definition of θ̂(·),
we have

∫ T
0 |θ̂(t)|2 dt < +∞. Therefore, θ̂ (·) ∈ �. We call θ̂ (·) the minimal price of risk

process and call ρθ̂ the minimal pricing kernel.
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Let H be the set of all nonincreasing functions g : R+\{0} → R which is bounded from
below. The following result, which essentially follows from theorem 6.6.4 in Karatzas and
Shreve (1998), indicates that any contingent claim in the form g(ρθ̂ ) where g ∈ H can be
replicated.

THEOREM 4.4. Suppose Assumptions 2.1, 4.1, and 4.3 hold. Let θ̂(·) be as in (4.4), and
g(·) ∈ H be such that x := E[ρθ̂ g(ρθ̂ )] < ∞. Then g(ρθ̂ ) is attainable with the initial wealth
x.

Now, take ρ := ρθ̂ , and assume (as before) that ρ has no atom. Noticing that Lemma
2.5 holds for any atomless, positive random variable ρ (see Jin and Zhou 2008, theorem
B.1), we may go through exactly the same argument as that in Section 2.3 and formulate
the portfolio choice model (2.19). If (2.19) is solved with an optimal solution G∗, then the
optimal terminal wealth is X∗ = g(ρ) where g(x) = G∗(1 − Fρ(x)), according to (3.2).
However, it is indeed true that g ∈ H; hence X∗ is replicable by the initial wealth x0, while
the replicating portfolio is the optimal strategy to the portfolio selection model.

In the case of a stochastic investment opportunity set, we do not yet have a general
quantile formulation. However, we may at least include the case of a weak complete
market, a notion proposed by Schachermayer, Sirbu, and Taflin (2009). Let θ̂ (·) be
defined as in (4.4) (even without Assumption 4.3). The market is weak complete if g(ρθ̂ )
is replicable for any bounded nonincreasing function g. (So Theorem 4.4 says that a
market with a deterministic investment opportunity set and with cone constraints is
weak complete.) Clearly, for a weak complete market the quantile formulation is valid so
long as ρθ̂ admits no atom.

Therefore, the solutions to the goal-reaching problem and Yaari’s model, obtained in
Section 3, as well as that to the behavioral model (see theorem 4.1 in Jin and Zhou 2008),
can be extended readily to incomplete markets with deterministic investment opportunity
sets and with conic constraints (or even to weak complete markets), where the unique
pricing kernel ρ is replaced by the minimal pricing kernel ρθ̂ .

5. MUTUAL FUND THEOREM

The Mutual Fund Theorem, also called the two-fund theorem or separation theorem, states
that under some assumptions, agents achieve optimality by simply allocating money
between the bank account and a risky portfolio called the mutual fund. The key feature
is that the mutual fund is the same for all agents. The mutual fund theorem dates back
to the Markowitz mean–variance portfolio analysis in single period where it can be
shown that if all the investors are mean–variance efficiency seekers, then the mutual
funds theorem holds even though different investors may have difference risk-return
preferences. This becomes the foundation of the capital asset pricing model (CAPM).
Merton (1971) shows that for the continuous-time Black–Scholes model (where the
opportunity set is deterministic) the mutual fund theorem holds if all the agents are
power utility maximizers. Such a result has been generalized to the case of general
concave utility functions; see Karatzas and Shreve (1998). Recently, Schachermayer et
al. (2009) discuss in a general setting when a mutual fund theorem holds true, assuming
all the agents are expected utility maximizers.

Now, thanks to the quantile formulation developed in this paper especially the general
expression of an optimal terminal wealth (3.2), we are able to prove that the mutual fund
theorem holds in any market (complete or incomplete, with possible conic constraints
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on portfolios) having a deterministic opportunity set so long as all the agents follow
the general model (2.19). Note that such a model covers very diversified risk–return
preferences including those of the classical utility maximization, mean–variance and
various behavioral models.

Consider the (possibly incomplete) market presented in Section 4 where portfolios
are constrained in a given closed convex cone K. Under Assumption 4.3, let θ̂ (·) be the
minimal price of risk process and define N(t) := ρθ̂ (t)−1, 0 ≤ t ≤ T. It is well known
that N(·) is the wealth process of the optimal portfolio under log utility maximization
with initial wealth 1. We call this portfolio the numéraire portfolio; see, for example,
Schachermayer et al. (2009).

THEOREM 5.1. Under Assumptions 4.1 and 4.3, any optimal cash flow of the model
(2.19) can be attained by a (dynamic) portfolio of the risk-free asset S0(·) and the numéraire
portfolio N(·). Moreover, this portfolio never short sells N(·).

Proof . Itô’s formula shows that

d N(t) = [r (t) + |θ̂(t)|2]N(t) dt + N(t)θ̂ (t)�dW(t), N(0) = 1.

Define

W̃(t) :=
∫ t

0

[
1

|θ̂(u)|1{θ̂ (u) �=0}
θ̂ (u)� + 1√

n
1{θ̂(u)=0}1

�
n

]
dW(u), 0 ≤ t ≤ T.

By Lévy’s characterization, W̃(·) is a one-dimensional standard Brownian motion on
(�,F, (Ft)0≤t≤T, P). Then, N(·) satisfies

d N(t) = [r (t) + |θ̂(t)|2]N(t) dt + |θ̂(t)|N(t) dW̃(t), N(0) = 1.

Now the probability space (�,F W̃
T , (F W̃

t )0≤t≤T, P), where F W̃
t is generated by W̃(·) and

augmented by all the P-null sets, together with the risk-free asset S0(·) and the risky
asset N(·), constitutes a new, fictitious financial market. This market has a deterministic
investment opportunity set. We further impose the no-shorting constraint in this market,
that is, the position of N(·) must be nonnegative, which is a conic constraint. It is easy
to show that the minimal price of risk process, as determined by (4.4) in general, is |θ̂(·)|
in this new market; hence the corresponding minimal pricing kernel is ρθ̂ (T) := ρ itself.
In other words, the minimal pricing kernels in the two markets are identical. However, it
has been shown that with an optimal solution G∗(·) to (2.19) in the original market, the
corresponding optimal terminal payoff is X∗ = g(ρ) where g(x) = G∗(1 − Fρ(x)). Recall
that g ∈ H; hence Theorem 4.4 yields that X∗ is replicable by an admissible portfolio
in the new market. More precisely, there exists an F W̃

t -progressively measurable (and
thus Ft-progressively measurable) portfolio α(·), with α(t) ≥ 0, a.s., a.e. t ∈ [0, T], that
replicates X∗ = g(ρ) from the initial wealth x0. Here α(t) is the amount allocated to N(·)
at time t; hence its nonnegativity is due to the no-shorting constraint we have imposed.
It follows that this replicating portfolio never short sells N(·). Finally, to see that this
replicating portfolio does satisfy the given conic constraint, note that, again by Theorem
4.4, N(·) = ρθ̂ (·)−1 is replicable in the original market, and so is any nonnegative position
of N(·) because the portfolio constraint in the original market is conic. The proof is thus
complete. �
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The preceding theorem shows that N(·) is a mutual fund. This is probably the most
general mutual fund theorem to date, at least to our best knowledge, due to the broad
coverage of our quantile portfolio choice model (2.19). The result suggests that the mutual
fund theorem is somewhat inherent in financial portfolio selection, at least in markets
with deterministic opportunity sets. As a consequence, the same risky portfolio is being
held across neoclassical (rational) and behavioral (irrational) agents in the market. This,
in turn, will shed light on the market equilibrium and capital asset pricing in markets
where rational and irrational agents coexist.

There is an interesting application of our result to models featuring the so-called mental
accounting. Mental accounting, a notion coined by Thaler (1980) and an important
ingredient of the behavioral theory, argues that people group their assets into a number
of nonfungible mental accounts. Das et al. (2010) consider a single-period portfolio
optimization with several separated mental accounts of different objectives. In particular,
within each account the agent tries to maximize the expected return while lowering the
risk which is identified as the probability that the terminal payoff is below some threshold.
They show that if the returns of the assets are joint-normally distributed, then the optimal
portfolios in those mental accounts are in the same mean–variance efficient frontier.
Consequently, the agent will hold the same risky portfolio in each mental account, and
so will she on aggregation. Now, consider an extension to the continuous-time market
with a deterministic investment opportunity set. If within each mental account the agent
follows an instance of our general quantile model (although across different accounts
the preferences could be very different; say for Account A the agent is rational while for
Account B she is behavioral), then she will hold the same risky portfolio N(·) in each
mental account. As a result, she will hold the same risky portfolio in total.

6. CONCLUSIONS

Existing risk–return criteria (neoclassical and behavioral) in portfolio selection have
introduced distortions in either payments or probabilities, or both, in evaluating uncertain
payments. These distortions have various economical interpretations and significance. Yet
they have given rise to difficulties, especially in the dynamic setting, for which traditional
approaches fall apart. In this paper we propose to change the whole perspective of
continuous-time portfolio choice: Instead of determining random terminal cash flows—
specifications of values for all scenarios—one should consider quantiles—fractions of
scenarios below given values, even if the underlying models may not explicitly involve
quantiles in their objectives or constraints. The result is quite satisfying: it has sorted
out the issues of nonlinear expectation and nonconcavity simultaneously. We hope that
the quantile formulation opens up a broad avenue to modeling and solving financial
portfolio choice problems.

One should note that the quantile approach highly depends on the prerequisites that
the preference measure is law-invariant and the pricing kernel is atomless. While we
acknowledge a great wide variety of problems do satisfy these assumptions, it is a very
challenging problem to explore beyond them.
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FÖLLMER, H., and A. SCHIED (2004): Stochastic Finance: An Introduction in Discrete Time, 2nd
edn. Berlin: Walter de Gruyter.
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