Novel covalently linked pyrene–aryl azide systems: synthesis of 1-(4-azidobenzoyloxy)pyrene

Igor I. Barabanov, Alexander V. Polukhin, Valeri V. Korolev, Leonid V. Kuibida and Andrey A. Nefedov

© 2015 Mendeleev Communications. Published by ELSEVIER B.V.

Lead tetraacetate oxidation of pyrene followed by hydrolysis affords 1-hydroxy-4-pyrene whose esterification with 4-azidobenzoic acid gives a new bifunctional luminophore characterized by UV and luminescence spectroscopy.

The bridged pyrene–aryl azide systems, a narrow and poorly investigated group of compounds, can be interesting for studying photoaffinity labeling of biopolymers by binary reagents. Binding of the pyrenyl and azidoaryl groups by bridges (X) of various lengths and structures allows one to vary the rate constants of elementary processes and investigate their dynamics and mechanism. Recently, we have synthesized the first esters of pyren-1-ylalkanols with 4-azido-2,3,5,6-tetrafluorobenzoic acid. Primary physical and chemical processes that occur upon photoexcitation of these molecules have been studied using picosecond and nanosecond absorption and luminescence spectroscopy.

In our hands, pyrene 4 was fully oxidized with a ~10% molar excess of Pb(OAc)4 in a boiling (3 h) mixture of benzene and acetic acid (9:1 v/v). According to TLC and the chromatomass-spectrometric analysis, the reaction affords 1-acetoxy-4-pyrene 5 and diacetoxy-4-pyrene (Scheme 1). After a preparative chromatographic separation, compound 5 was obtained in 49% yield. The structure of the target 1-acetoxy-4-pyrene 5 was identified by melting point, IR and mass spectra. The IR spectrum of 5 demonstrates a characteristic absorption band of an ester carbonyl group at 1763 cm⁻¹, and the mass spectrum contains the signal of molecular ion at m/z 260.

In the IR spectrum of diacetoxy-4-pyrene (yield 13%), the absorption bands for the carbonyl groups appear at 1763 cm⁻¹. Its mass spectrum exhibits the molecular ion at m/z 318. However, as compared with acetoxy-4-pyrene 5, diacetate looks in the chromatograms as a broadened peak. These data along with 1H NMR spectrum testify to the presence of isomers. The 1H NMR spectrum contains double set of neighboring singlets for the protons of the methyl groups at ~2.5 ppm and the well-separated doublet signals from all protons of the pyrene nucleus in the 7.76–8.24 ppm region of close intensity. Most probably, this material is a mixture of 1,6- and 1,8-diacetoxy-4-pyrene in a ~1:1 molar ratio.

1-Acetoxy-4-pyrene 5 was hydrolyzed in a boiling aqueous-ethanol NaOH solution. The following evaporation of organic solvent from the reaction mixture and its acidification afforded a white fine-crystalline precipitate of high-purity pyrenol 3, which was identified by its melting point, IR and mass spectra.

The esterification on using 2-chloro-1-methylpyridinium iodide (the Mukaiyama reagent) was the method of choice to access 1-(4-azidobenzoyloxy)pyrene 1 (see our previous related studies). Although Mukaiyama works present no reactions of aromatic carboxylic acids with phenols, we anticipated that this method may be used for condensation of the chemically labile 4-azidobenzoyloxy-2-pyrene 2 with pyrenol 3 into ester 1 under similar conditions.

The esterification of 4-azidobenzoic acid 2 with 1-hydroxy-4-pyrene 3 was supposed to be the optimal access to compound 1. Despite a simple structure of the 1-hydroxy-4-pyrene 3, all known ways of its synthesis from pyrene 4 are very complicated and require the use of special reagents and conditions. In this study, we used a direct acetoxylation of condensed polycyclic aromatic hydrocarbons with lead tetraacetate. It was reported that such an oxidation of pyrene 4 furnished 1-acetoxy-4-pyrene 5 and isoemeric 1,6- and 1,8-diacetoxy-4-pyrenes, however, detailed procedures, product yields and approval of their structure were not given.

In our hands, pyrene 4 was fully oxidized with a ~10% molar excess of Pb(OAc)4 in a boiling (3 h) mixture of benzene and acetic acid (9:1 v/v). According to TLC and the chromatomass-spectrometric analysis, the reaction affords 1-acetoxy-4-pyrene 5 and diacetoxy-4-pyrene (Scheme 1). After a preparative chromatographic separation, compound 5 was obtained in 49% yield. The structure of the target 1-acetoxy-4-pyrene 5 was identified by melting point, IR and mass spectra. The IR spectrum of 5 demonstrates a characteristic absorption band of an ester carbonyl group at 1763 cm⁻¹, and the mass spectrum contains the signal of molecular ion at m/z 260.

In the IR spectrum of diacetoxy-4-pyrene (yield 13%), the absorption bands for the carbonyl groups appear at 1763 cm⁻¹. Its mass spectrum exhibits the molecular ion at m/z 318. However, as compared with acetoxy-4-pyrene 5, diacetate looks in the chromatograms as a broadened peak. These data along with 1H NMR spectrum testify to the presence of isomers. The 1H NMR spectrum contains double set of neighboring singlets for the protons of the methyl groups at ~2.5 ppm and the well-separated doublet signals from all protons of the pyrene nucleus in the 7.76–8.24 ppm region of close intensity. Most probably, this material is a mixture of 1,6- and 1,8-diacetoxy-4-pyrenes in a ~1:1 molar ratio.

1-Acetoxy-4-pyrene 5 was hydrolyzed in a boiling aqueous-ethanol NaOH solution. The following evaporation of organic solvent from the reaction mixture and its acidification afforded a white fine-crystalline precipitate of high-purity pyrenol 3, which was identified by its melting point, IR and mass spectra.

The esterification on using 2-chloro-1-methylpyridinium iodide (the Mukaiyama reagent) was the method of choice to access 1-(4-azidobenzoyloxy)pyrene 1 (see our previous related studies). Although Mukaiyama works present no reactions of aromatic carboxylic acids with phenols, we anticipated that this method may be used for condensation of the chemically labile 4-azidobenzoyloxy-2-pyrene 2 with pyrenol 3 into ester 1 under similar conditions.

The esterification of 4-azidobenzoic acid 2 with 1-hydroxy-4-pyrene 3 was supposed to be the optimal access to compound 1. Despite a simple structure of the 1-hydroxy-4-pyrene 3, all known ways of its synthesis from pyrene 4 are very complicated and require the use of special reagents and conditions. In this study, we used a direct acetoxylation of condensed polycyclic aromatic hydrocarbons with lead tetraacetate. It was reported that such an oxidation of pyrene 4 furnished 1-acetoxy-4-pyrene 5 and isoemeric 1,6- and 1,8-diacetoxy-4-pyrenes, however, detailed procedures, product yields and approval of their structure were not given.

In our hands, pyrene 4 was fully oxidized with a ~10% molar excess of Pb(OAc)4 in a boiling (3 h) mixture of benzene and acetic acid (9:1 v/v). According to TLC and the chromatomass-spectrometric analysis, the reaction affords 1-acetoxy-4-pyrene 5 and diacetoxy-4-pyrene (Scheme 1). After a preparative chromatographic separation, compound 5 was obtained in 49% yield. The structure of the target 1-acetoxy-4-pyrene 5 was identified by melting point, IR and mass spectra. The IR spectrum of 5 demonstrates a characteristic absorption band of an ester carbonyl group at 1763 cm⁻¹, and the mass spectrum contains the signal of molecular ion at m/z 260.

In the IR spectrum of diacetoxy-4-pyrene (yield 13%), the absorption bands for the carbonyl groups appear at 1763 cm⁻¹. Its mass spectrum exhibits the molecular ion at m/z 318. However, as compared with acetoxy-4-pyrene 5, diacetate looks in the chromatogram as a broadened peak. These data along with 1H NMR spectrum testify to the presence of isomers. The 1H NMR spectrum contains double set of neighboring singlets for the protons of the methyl groups at ~2.5 ppm and the well-separated doublet signals from all protons of the pyrene nucleus in the 7.76–8.24 ppm region of close intensity. Most probably, this material is a mixture of 1,6- and 1,8-diacetoxy-4-pyrenes in a ~1:1 molar ratio.

1-Acetoxy-4-pyrene 5 was hydrolyzed in a boiling aqueous-ethanol NaOH solution. The following evaporation of organic solvent from the reaction mixture and its acidification afforded a white fine-crystalline precipitate of high-purity pyrenol 3, which was identified by its melting point, IR and mass spectra.

The esterification on using 2-chloro-1-methylpyridinium iodide (the Mukaiyama reagent) was the method of choice to access 1-(4-azidobenzoyloxy)pyrene 1 (see our previous related studies). Although Mukaiyama works present no reactions of aromatic carboxylic acids with phenols, we anticipated that this method may be used for condensation of the chemically labile 4-azidobenzoyloxy-2-pyrene 2 with pyrenol 3 into ester 1 under similar conditions.

The esterification of 4-azidobenzoic acid 2 with 1-hydroxy-4-pyrene 3 was supposed to be the optimal access to compound 1. Despite a simple structure of the 1-hydroxy-4-pyrene 3, all known ways of its synthesis from pyrene 4 are very complicated and require the use of special reagents and conditions. In this study, we used a direct acetoxylation of condensed polycyclic aromatic hydrocarbons with lead tetraacetate. It was reported that such an oxidation of pyrene 4 furnished 1-acetoxy-4-pyrene 5 and isoemeric 1,6- and 1,8-diacetoxy-4-pyrenes, however, detailed procedures, product yields and approval of their structure were not given.
tions, the salt 6 being an intermediate. In fact, 1-hydroxypyrene 3 readily reacted with acid 2 in the presence of pyridine salt and triethylamine at room temperature to give the expected ester 4 (36% yield after chromatographic separation) and by-products. The structure of ester 1 was fully confirmed by the IR and 1H NMR spectra as well as by the HRMS data. The mass spectra of 1, obtained by the methods of electron and laser ionization, display the signals of molecular ion at m/z 355. The mass spectrum of 1, recorded using the method of laser ionization, contains a characteristic signal with m/z 335, whose value corresponds to the molecular mass of 4-(pyren-1-ylxoycarbonil)phenylmethine.

We also recorded the UV-VIS and luminescence spectra of 1-(4-azidobenzoyloxy)pyrene 1 (Figure 1). The structure and positions of the absorption bands of compound 1 were found to be practically independent of the solvent polarity (hexane and acetonitrile), only small bathochromic shift of the long-wavelength bands (about 5 nm) was observed. The efficiency of compound 1 at the excitation wavelength of 351 nm. The quantum yield of pyrene 4 fluorescence is about 0.3 and its singlet state lifetime is about 300 ns. The quantum yield of compound 1 fluorescence could be estimated to be less than 5x10⁻⁴ and the singlet state lifetime to be less than 1 ns. A similar situation was observed for hexane solutions of 1.

Note that UV irradiation of 1-(4-azidobenzoyloxy)pyrene 1 solutions leads to its rapid photodecomposition accompanied by an increase of the structureless absorption in the 200-600 nm region. Thus, we have prepared the new bifunctional compound 1-(4-azidobenzoyloxy)pyrene whose spectral data demonstrate very efficient intramolecular quenching of local pyrene fluorescence. This compound seems promising for further studies of the photoaffinity labeling mechanisms.

References

Received: 6th August 2014; Com. 14/4440

Figure 1 (1, 2) UV-VIS and (3, 4) luminescence spectra of (1, 3) pyrene 4 and (2, 4) (azoaroyloxy)pyrene 1 in deoxygenated acetonitrile solution at room temperature; spectra (3, 4) detected upon 313 nm photoexcitation.