A comparison of statistical and deterministic methods for shallow landslide susceptibility zoning in clayey soils

Mariantonietta Ciurleo*, Leonardo Cascini, Michele Calvello
University of Salerno, Italy

ABSTRACT

Shallow landslides are widespread in different geological contexts and generally occur as multiple events over large areas. When these phenomena involve fine-grained soils, they may cause serious consequences—in terms of environmental and property damages—and thus their spatial forecasting becomes a relevant issue for land use planning and design purposes. The existing literature provides several methods for landslide susceptibility assessment, categorized in qualitative and quantitative methods. When dealing with analyses at large scale (1:5000), quantitative methods are generally preferred. In this paper, landslide susceptibility maps are produced for a study area prone to shallow landsliding, located in Catanzaro (southern Italy). To this aim, two quantitative methods are implemented: the statistical “information value method” and the deterministic “TRIGRS model.” The two approaches are compared by means of two indicators of the grade of correctness of the landslide susceptibility maps: the area under curve of the ROC curve, AUC, and the overestimation index, OI. The results of the analyses in terms of AUC values demonstrate the effectiveness and consistency of both methods in performing the susceptibility mapping of the study area. When the OI values are considered, the results provided by the deterministic model are slightly better than the ones resulting from the statistical analysis. This does not come as a surprise for the case study at hand and it can be ascribed to the availability, within the study area, of a reliable database of soil properties, and an in-depth knowledge of the behaviour of the considered landslides.

1. Introduction

Rainfall-induced shallow landslides are widespread all over the world and, during a single rainfall event, they can involve large areas (Park et al., 2013; Lee and Park, 2016; Romer and Ferentinou, 2016; among others). The consequences caused by these phenomena are linked to a series of factors, among which: the geological context of the area affected by landsliding, the mechanical characteristics of the soils, the vulnerability of the exposed elements.

Shallow landslides of flow type in coarse-grained soils are generally characterized by both scarcity of warning signs in the pre-failure stage and high velocities in the post-failure phase (McDougall and Hungr, 2004; Sorbino et al., 2010; Hungr et al., 2014; Yerro et al., 2016). On the other hand, shallow landslides involving clayey colluvial soils frequently present warning signs in the pre-failure stage (e.g., tension cracks at the top of the slope) and a shorter run-out in the post failure phase (Hungr et al., 2001; Meisina, 2006; Cascini et al., 2015). Many examples of rainfall-induced shallow landslides in both coarse-grained and fine-grained soils are reported in Europe (e.g., Borrelli et al., 2012; Martinović et al., 2016), America (e.g., Baum et al., 2005; Godt et al., 2008), Asia (e.g., Park et al., 2013; Hadmoko et al., 2017) and Africa (e.g., Broothaerts et al., 2012; Romer and Ferentinou, 2016). A significant number of contributions specifically deal with the assessment of shallow landslide susceptibility (e.g., Leventhal and Kotze, 2008; Nandi and Shukoor, 2009; Frattini et al., 2010; Kavzoglu et al., 2015; Romer and Ferentinou, 2016).

Landslide susceptibility assessment, herein intended as the landslide spatial probability of occurrence within a given territory, can be performed by qualitative or quantitative methods, depending on how the landslide causal factors are considered and modelled (Lee and Park, 2016). The applicability of each method depends on: the availability, quality and accuracy of the data; the resolution of zoning; the required outcomes; and the scale of analysis (Soeters and van Westen, 1996; Cascini, 2008; Fell et al., 2008). Quantitative analyses can be divided into statistical and deterministic methods (Soeters and van Westen, 1996). Statistical methods, applicable at different scales (from 1:100,000 to 1:5000), establish the relationships between predisposing factors and landslides through the proper use of statistic indicators (Carrara, 1983; Baeza and Corominas, 2001; Nefeslioglu et al., 2008), while neglecting to explicitly model the landslide failure mechanisms.
Deterministic methods, applicable at large and detailed scales (≥ 1:5000), properly analyze existing or potential failure mechanisms via physically-based models calibrated using on-site and laboratory test results (Salciarini et al., 2006; Huang and Kao, 2006; Godt et al., 2008; Park et al., 2013).

Several significant examples of the application of landslide statistical analyses at large scale are available in the literature (Cervi et al., 2010; Reza and Daneshvar, 2014; Iovine et al., 2014; Regmi et al., 2014). In some cases, a separation between different types of landslides is lacking and, for instance, slides, creep phenomena and falls may be considered together when deriving the event map for the statistical correlations (Hadmoko et al., 2017). On the other hand, a proper understanding of the landslide triggering processes is typically a key prerequisite for a consistent application of physically based models estimating shallow rainfall-triggered landslide susceptibility (Godt et al., 2008; Sorbino et al., 2010; Cascini et al., 2017). Only few contributions deal with the comparison between the results of statistical and deterministic methods applied to the same study area at large scale (Cervi et al., 2010; Armas et al., 2013).

Starting from the abovementioned aspects, the paper highlights the important role played by the understanding of the landslide mechanisms for the susceptibility assessment of shallow landslides in clayey soils. This aim is pursued by means of a skilled application of both statistical and deterministic methods in a study area located in southern Italy. The issue is dealt with at large scale (1:5000) thus allowing a proper analysis of the study sites S2 and S3, which have been already analysed by Gullà et al. (2004), Cascini et al. (2015) and Cascini et al. (2017). The focus of the present paper is the site, indicated in the Figure as S1, already partly analysed by Cascini et al. (2015) and Calvello and Ciurleo (2016). The chosen site of interest is deemed to be the most representative in relation to two important shallow landslide events, which respectively occurred in 2009 and 2010.

The homogeneity of the fine-grained soils outcropping in the sites S1, S2 and S3 emerges from a comparison of geotechnical properties (Fig. 2). In the entire area, the soils can be classified as inorganic, inactive clays characterized by high plasticity and a high liquid limit (Fig. 2b). All the grain size distribution data fall within a well-defined grain size envelope; the upper limit shows a fine-grained fraction ranging from 89% to 99%, while the amount of sand varies from 1% to 11%. The index properties of the soil, the minimum and maximum values assumed by the void ratio and the soil porosity are summarized in Fig. 2b. The available shear strength envelope ranges from an upper limit, with a cohesion value of 24.3 kPa and a friction angle of 35.2°, to a lower limit characterized by a cohesion value of 2 kPa and a friction angle of 22.3°. The saturated permeability (Ks) ranges from 3.1 × 10⁻⁶ m/s to 7.65 × 10⁻⁷ m/s (Gullà et al., 2004, 2008; Cascini et al., 2015), reaching a value of 5 × 10⁻⁸ m/s in the topmost cracked weathered layers (Cascini et al., 2017).

Owing to the homogeneity of the geotechnical data, the information gathered by previous studies in the sites S2 and S3 have been combined with those available in the study areas, i.e. site S1. The study area is located on the left bank of the Corace river, it covers approximately 8 km² and it represents the product of a complex geological evolutive model provided by Cascini et al. (2015). The topographical and morphological data used for the analyses are derived from a digital elevation model with a 5 m resolution generated from digital topographic maps of the Calabria Region (1:5000 scale, year 2005). The available geological information, provided in Fig. 3, shows that the outcropping lithology is mainly characterized by silty clays, partially affected by intercalations of sands. A sandstone layer constituting a morphoselective scarp, which is about 10 to 30 m thick and covers 2.5% of the test site, will not be included in the analysis, given the study focuses on shallow landslide susceptibility in fine-grained soils.

![Fig. 1. Geographical location of the study area. Legend: 1. Pliocene light blue-grey silty clays; 2. zones frequently involved by shallow landslides studied in the past (S2 and S3); 3. study area (S1). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)](image-url)
The fine-grained soils, outcropping in S1 and in nearby areas, are involved in several processes that can be considered landslide predisposing factors (e.g., weathering of the most shallow layers, formation of cracks). The combination of these factors leads to an evolutionary pattern of the landslides lasting few years, from the first warning signs in the pre-failure stage to the end of movements (Fig. 4). It follows that the landslide inventory map has to be continuously updated. As reported in Fig. 5a, the original landslide inventory in the study area is dated 2009 and was updated in 2010.

Using aerial photos and satellite images from Google Earth, 117 and 509 shallow landslide triggering areas of slide type were inventoried in 2009 and in 2010, respectively. It is worth highlighting that in 2009 the total area affected by landslides is equal to 0.09 km², while in 2010 this area is about 0.2 km². The smallest triggering landslide area is about 9 m² while the largest one is 6000 m²; the depths of the slip surfaces range from few decimetres to 3 m. Considering that the sliding surfaces' depths depend on their location on the slope, Cascini et al. (2017) proposed a methodology to map the thickness of degraded rock. The methodology, which was initially calibrated and validated by the authors over one morphological hollow (0.3 km² size), is herein applied to map the weathered thickness for the entire study area (Fig. 5b).

Fig. 5b underlines the presence of low values of thickness on sharply defined ridges (up to 0.5 m) and at the top of the slopes (from 0.5 m to 1.5 m) and maximum thickness depths higher than 5 m at the valley bottom.

Significant phases of the morphological slope evolution due to shallow landslides are generally related to short and intense rainfall events. The analysis of the rainfall patterns in relation to the activity of the considered landslides is beyond the scope of the present paper yet it's worth highlighting, herein, some findings on “critical rainfall” conditions for the area coming from previous works (Gullà et al., 2004; Cascini et al., 2017). Referring to shallow landslides that respectively occurred in site S2, in 2002 and 2003, and in Site S1, in 2009, these studies indicated the maximum intensity of the rainfall event ranging from 43 mm (2002−2003) to 70 mm (2009) over 2 consecutive days and equal to 162 mm over six consecutive days (2009).

2.2. Methods

The methodology used herein to assess the susceptibility to shallow landslides in fine-grained soils starts with the calibration of the statistical and physically-based models and it ends with the production of landslide susceptibility computational maps by means of both statistical and deterministic methods. Both maps are computed and plotted using terrain computational units, TCUs (Calvello et al., 2013), and discretizing the study area by means of square cells whose dimension (herein 5 m by 5 m) is related to the employed scale of the analysis (1:5000 scale).

The statistical analyses are based on bivariate correlations (Tangestani, 2009; Conforti et al., 2012; Ciurleo et al., 2016) over the study area, between available independent variables (e.g. elevation zone, slope gradient, slope curvature) and a dichotomous dependent variable derived from the available landslide inventories. The independent variables can be either categorical or numerical. The categorical variables are divided in a number of classes directly correlated to the subdivision in classes of the thematic maps from which they are derived; the numerical variables are herein always divided in eight...
classes using the Jenks Natural Breaks algorithm (Jenks, 1977). Following this classification method, class breaks are identified as the boundaries that best group similar values and that maximize the differences between classes.

The dependent variables used for the analyses are the two already-mentioned landslide inventories dated 2009 and 2010. For both landslide inventories, the statistical weight assigned to each class, j, of each variable, V_i, is computed using the following formula, originally proposed within the “information value method” (e.g. Yin and Yan, 1988):

$$W_{ij} = \log \left(\frac{D_j}{D^*} \right) = \log \left(\frac{F_j/N_{ij}}{F_{tot}/N_{tot}} \right)$$

(1)

where: W_{ij} is the weight assigned to the class j of the independent variable V_i; D_j is the density of landslides within class j of the independent variable V_i; D^* is the average density of landslides within the study area; F_j is the number of TCUs with landslides belonging to the class j of the independent variable V_i; N_{ij} is the number of TCUs belonging to the class j of the independent variable V_i; F_{tot} is the total number of TCUs with landslides within the study area; N_{tot} is the total number of TCUs within the study area.

When W_{ij} assumes low negative value, the statistical implication is low probability for TCUs belonging to a given class of a given variable to be affected by landslides; when W_{ij} assumes high positive values, there’s a high probability that TCUs belonging to that class are affected by landslides. When landslides are not present in a given class of a given independent variable, Eq. 1 cannot be used to compute the weight values. In such cases, the class weight is herein set to a value equal to the closest negative integer inferior to the minimum computed weight for all classes of all variables (Ciurleo et al., 2016).

The performance assessment of the bivariate correlation between the independent and the dependent variables used herein is based on the criteria proposed by Ciurleo et al. (2016), which employ two indicators, β and α, defined as follows:

$$\beta_i = \frac{TPR_i}{FPR_i} = \frac{\text{Sensitivity}_i}{1 - \text{Specificity}_i}$$

(2)

$$\alpha_i = \sqrt{\frac{\sum_{j=1}^{n} W_{ij} - W_i}{n - 1}}$$

(3)

where: TPR_i is the true positive rate (sensitivity of the bivariate model) for the independent variable V_i; FPR_i is the false positive rate for the independent variable V_i (1 – specificity of the bivariate model); W_{ij} is the normalized value of the weight assigned to the class j of the independent variable V_i (Ciurleo et al., 2016); W_i is the average value of the weights assigned to the classes of the independent variable V_i; n is the number of classes of the independent variable V_i.

The two indicators computed with Eqs. (2) and (3) have been originally proposed to select the independent variables that are relevant for a statistical analysis based on bivariate correlations between them and one dependent variable. Herein they will be used to verify that all the considered variables are significant for the performed analysis.

Finally, the calibrated computational map is evaluated by means of a multivariate computational susceptibility index, I_{STCU}, which is assigned to each TCU according to the following formula:

$$I_{STCU} = \sum_{i} W_{A(i)}$$

(4)

where: $W_{A(i)}$ is the weight index of the relevant independent variable V_i related to the TCU belonging to class $k(i)$ of that variable.

The deterministic analyses are based on TRIGRS (Montgomery and Dietrich, 1994), a physically-based model that is widely used for determining the distribution of shallow precipitation-induced landslide source areas in different geological contexts (Godt et al., 2008; Montrasio et al., 2011; Sorbino et al., 2010). The analysis couples a hydrologic model with an infinite slope stability computation in order to analyze the pore water pressure regime and then evaluate a distribution of factors of safety (FS) over large areas. In particular, TRIGRS models rainfall infiltration by solving the Richards equation for vertical infiltration that may occur during a precipitation event (Srivastava and Yeh, 1991) in homogeneous isotropic materials. It analyses the slope stability using a simple infinite-slope analysis (Taylor, 1948) to compute FS for each cell of the computational domain. TRIGRS, used in conjunction with geographic information system (GIS) software, allows to obtain maps of FS results thus allowing to differentiate stable (FS > 1) from unstable cells (FS ≤ 1). Among the disadvantages of TRIGRS, it is worth listing the following: steady or quasi-steady models are not applicable to several realistic cases (e.g. Wu and Sidle, 1995; Sorbino et al., 2010); the model needs abundant and accurate spatial information over large portions of the study area in order to obtain reliable results; the results are quite sensitive to some of the input data, such as topographic data (slope gradient), hydraulic properties of soils (saturated vertical hydraulic conductivity, hydraulic diffusivity, saturated and residual volumetric water contents), initial water-table and soil depths (Sorbino et al., 2010). Other input data the model needs are: rainfall data (with durations ranging from hours to a few days), cohesion, friction angle and total unit weight of soils. To sum up, realistic results from deterministic analyses based on TRIGRS are strictly linked to: a consistent identification of the in situ pore pressure regime, a good knowledge of mechanical and hydraulic soil properties, an accurate weathered thickness map, and a deep understanding of the triggering mechanisms of the considered landslides. The sensitivity of TRIGRS to soil thickness has been tested in Cascini et al. (2017). In the present paper we will test its sensitivity to the soil mechanical properties and use it to properly identify the susceptibility computational map.

The performance of the susceptibility maps, obtained by both the statistical analysis and TRIGRS, is evaluated considering two indicators:
Fig. 4. 3D view from Google Earth of December 2005, April 2009 and March 2010 for the study area (S1).
OI = \frac{A_{\text{out}}}{A_{\text{stab}}} \cdot 100 \quad (5)

\text{OI}(5') = \frac{A_{\text{out}}}{A_{\text{stab}(5')}} \cdot 100 \quad (6)

where: \(A_{\text{out}} \) is the area computed unstable located outside the observed triggering area; \(A_{\text{stab}} \) is the area not affected by instability; \(A_{\text{stab}(5')} \) is the area not affected by instability obtained excluding from the study area the zones with a slope gradient inferior or equal to 5'.

Concerning the AUC, a perfect model fitting would be characterized by an AUC value of 1 and a model not better than random would be characterized by an AUC value of 0.5. OI, originally defined “error index” by Sorbino et al. (2007, 2010), is proposed in order to individuate the “overestimation” area, intended here as the area computed as unstable by the model but not inventoried as area affected by landsliding.

3. Analyses and results

3.1. Statistical analyses

The variables employed within the statistical model have been expressed in raster format using 303,071 square grid cells as TCUs, whose size is equal to 25 m². The dichotomous dependent variables, derived from two inventories of shallow landslides that occurred in 2009 and 2010, report 117 and 509 triggering areas which cover, respectively, 3421 and 10,602 TCUs of the study area. The independent variables used in the analysis (Fig. 6, Table 1) are the five variables deemed to be the most relevant following Calvello and Ciurleo (2016).

The first three variables, i.e. elevation zone (V1), slope gradient (V2) and slope curvature (V3), are computed from the native-resolution variables, processing them by means of focal statistics techniques so that the information they carry is averaged over a larger area around them. The area of influence considered for the three variables depends on the diameter of the buffer considered around each TCU, herein called \(D_n \), which is respectively equal to 32 cells for V1, and to 4 cells for V2 and V3. All three variables are classified according to a natural breaks criterion employing eight classes. The categorical variables outcropping lithology (V4) is divided in four classes; in this case, as already mentioned, the sandstone morphoselective scarp has been excluded from the analysis. The weathered rock thickness variable (V5) is divided in eight classes following the classification reported in the employed thematic map.

Table 2, reporting the values of the statistical weights computed using Eq. (1) for each class of each independent variable \(V_i \), underlines that the maximum weights computed considering the dichotomous dependent variables, respectively dated 2009 and 2010, are both attributed to class 8 of variable V2 (\(W_{28} = 1.28 \) in 2009 and \(W_{28} = 1.15 \) in 2010). High values of weights are computed for variables V1, V3 and V5 both in 2009 and 2010: \(W_{18}(2009) = 0.98; W_{18}(2010) = 0.68; W_{31}(2009) = 1.06; W_{31}(2010) = 0.94; W_{52}(2009) = 0.55; W_{52}(2010) = 0.60 \). Out of the four classes of variable V4, only one geological unit, which is the class corresponding to silty clays with sporadic sand intercalations, assumes a positive weight value, \(W_{44} = 0.28 \), for both years. Concerning low negative values of the weights, it is worth highlighting that only one class is characterized by a weight value equal to \(-2.59\) (\(W_{23} \)), while the \(W_i \) equal to \(-3.00\) is imposed whenever the argument of the logarithm used in Eq. (1) is equal to zero (Ciurleo et al., 2016).

All the independent considered variables are relevant for the analysis as testified by the value of \(\beta_i \) (Eq. 2) and \(\sigma_i \) (Eq. 3) respectively > 1.7 and 0.4 (Ciurleo et al., 2016), as reported in Table 3. The Table also shows the values of the two statistics needed to compute the bivariate success index, TPRi and FPRi. Fig. 7 shows two landslide susceptibility computational maps classified on the basis of the values assumed by the multivariate computational susceptibility index, respectively considering the dichotomous dependent variables dated 2009 and 2010, \(IS_{\text{TCLU}} \). As follow: not susceptible, for \(IS_{\text{TCLU}} \leq 0 \); susceptible for \(IS_{\text{TCLU}} > 0 \). The results indicate that about 20% of the study area is susceptible (i.e. \(IS_{\text{TCLU}} > 0 \)) in 2009; this area increases to 24% in 2010. The success of the analysis is verified by the high value assumed by the area under curve (AUC) of the ROC curve plotted in the sensitivity versus (1 – specificity) space, with values ranging from 96% in 2009 to 95% in 2010. On the contrary, the values of OI and OI(5') are never too low, as they range from OI = 19% (in 2009) to OI = 21% (in 2010) and OI(5') = 27% (in 2009) to OI(5') = 30% (in 2010).
3.2. Deterministic analyses

The input data employed within TRIGRS, as for the variables used in the statistical analyses, are expressed in raster format using 5 × 5 m² square grid cells as TCUs. The input data used in TRIGRS are the following: DEM, flow direction, thickness map, initial water table location, geotechnical properties of the soils and rainfall data. Flow direction has been directly derived by DEM with single cell size equal to 5 × 5 m². Following Cascini et al. (2017) it was possible to both reconstruct the thickness map (Fig. 5b) and localize the initial water table at the contact between intact and weathered rocks.

Referring to the geotechnical properties, the study area is analysed following two different cases (Table 4): case 1, assigning the same geotechnical input data for the entire study area; case 2, differentiating

Table 1
Classification of the independent variables employed in the statistical analysis at large scale.

<table>
<thead>
<tr>
<th>Class</th>
<th>V1 elevation zone (m)</th>
<th>V2 slope gradient (°)</th>
<th>V3 slope curvature (m⁻¹)</th>
<th>V4 geological unit (−)</th>
<th>V5 weathered thickness (−)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>30.39 to 55.86</td>
<td>0.00 to 4.12</td>
<td>−6.12 to −2.06</td>
<td>Coluvial deposits</td>
<td>0.00–0.50</td>
</tr>
<tr>
<td>2</td>
<td>55.87 to 81.33</td>
<td>4.13 to 8.59</td>
<td>−2.05 to −1.02</td>
<td>Halluvial deposits</td>
<td>0.50–1.00</td>
</tr>
<tr>
<td>3</td>
<td>81.34 to 105.98</td>
<td>8.60 to 12.89</td>
<td>−1.01 to −0.36</td>
<td>Slope debris</td>
<td>1.00–1.50</td>
</tr>
<tr>
<td>4</td>
<td>105.99 to 130.63</td>
<td>12.90 to 17.00</td>
<td>−0.35 to 0.13</td>
<td>Silty clays with sporadic sand intercalation</td>
<td>1.50–2.00</td>
</tr>
<tr>
<td>5</td>
<td>130.64 to 154.46</td>
<td>17.01 to 20.94</td>
<td>0.14 to 0.74</td>
<td></td>
<td>2.00–3.00</td>
</tr>
<tr>
<td>6</td>
<td>154.47 to 178.29</td>
<td>20.95 to 25.06</td>
<td>0.75 to 1.56</td>
<td></td>
<td>3.00–4.00</td>
</tr>
<tr>
<td>7</td>
<td>178.30 to 230.76</td>
<td>25.07 to 30.07</td>
<td>1.57 to 2.71</td>
<td></td>
<td>4.00–5.00</td>
</tr>
<tr>
<td>8</td>
<td>230.77 to 239.91</td>
<td>30.07 to 45.64</td>
<td>2.72 to 7.87</td>
<td></td>
<td>> 5.00</td>
</tr>
</tbody>
</table>
the geotechnical properties in relation to the thickness of the weathered rock. In particular, for case 1 the assigned geotechnical parameters are equal to the minimum values available from the geotechnical input data. For case 2, different geotechnical properties are assumed for three classes of thickness (0.5–1.0 m; 1.0–2.0 m and 2.0–3.0 m) corresponding to three different shallow landslide mechanisms. These values have been provided by Cascini et al. (2017) who, by means of 2D geotechnical analyses, were able to back-analyse these shallow pre-

Table 2
Weights assigned to the independent variables in the statistical analysis at large scale.

<table>
<thead>
<tr>
<th>Variables</th>
<th>Weights 2009</th>
<th>Weights 2010</th>
<th>Relevant</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>V1</td>
<td>V2</td>
<td>V3</td>
</tr>
<tr>
<td>W_{i1}</td>
<td>-3.00</td>
<td>-3.00</td>
<td>1.06</td>
</tr>
<tr>
<td>W_{i2}</td>
<td>-3.00</td>
<td>-3.00</td>
<td>0.55</td>
</tr>
<tr>
<td>W_{i3}</td>
<td>-3.00</td>
<td>-3.00</td>
<td>0.04</td>
</tr>
<tr>
<td>W_{i4}</td>
<td>-3.00</td>
<td>-1.52</td>
<td>-0.55</td>
</tr>
<tr>
<td>W_{i5}</td>
<td>-0.46</td>
<td>-0.52</td>
<td>-0.11</td>
</tr>
<tr>
<td>W_{i6}</td>
<td>0.25</td>
<td>0.23</td>
<td>0.13</td>
</tr>
<tr>
<td>W_{i7}</td>
<td>0.63</td>
<td>0.92</td>
<td>0.23</td>
</tr>
<tr>
<td>W_{i8}</td>
<td>0.98</td>
<td>1.28</td>
<td>0.25</td>
</tr>
</tbody>
</table>

Table 3
Values of parameters and indexes needed to select the independent variables relevant for the statistical analysis at large scale.

<table>
<thead>
<tr>
<th>Variables</th>
<th>2009</th>
<th>2010</th>
<th>Relevant</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>TPR_{i}</td>
<td>FPR_{i}</td>
<td>\beta_{i}</td>
</tr>
<tr>
<td>V1</td>
<td>95.8%</td>
<td>22.0%</td>
<td>4.36</td>
</tr>
<tr>
<td>V2</td>
<td>95.7%</td>
<td>17.6%</td>
<td>5.45</td>
</tr>
<tr>
<td>V3</td>
<td>73.3%</td>
<td>34.6%</td>
<td>2.12</td>
</tr>
<tr>
<td>V4</td>
<td>93.2%</td>
<td>48.8%</td>
<td>1.91</td>
</tr>
<tr>
<td>V5</td>
<td>84.0%</td>
<td>31.0%</td>
<td>2.71</td>
</tr>
</tbody>
</table>

Fig. 7. Results of the statistical analyses at 2009 and 2010: landslide susceptibility computational maps; receiver operating characteristic curves; values of statistical indicators of performance AUC, OI and OI(5°).
cipitation-induced landslides and to provide different values of cohesion and friction angle for which the factor of safety is equal to 1 along the assumed sliding surface. This is essentially due to the genesis of the landslide mechanisms and to their close relationship with the weathering processes (Cascini et al., 2017).

The obtained results (Fig. 8) are provided for both cases assuming a value of rainfall input data equal to 162 mm in six days (Cascini et al., 2017). The results clearly show a consistent decrease of the unstable areas passing from case 1 (minimum geotechnical data) to case 2 (different geotechnical data depending on the weathered thickness). This reduction appears evident also when comparing, using the indicators AUC, OI and OI(5°), the obtained results with the landslide inventories dated 2009 and 2010. For Case 1, the AUC values range from 92% to 91%, respectively computed considering the shallow landslide inventories dated 2009 and 2010; the OI values range from 18% (in 2009) to 16% (in 2010); the OI(5°) values range from 25% (in 2009) to 23% (in 2010). For case 2, the obtained results show: AUC = 93%, OI = 9% and OI(5°) = 13% for the landslide inventory dated 2009; AUC = 92%, OI = 8% and OI(5°) = 11% for the landslide inventory dated 2010. Comparing the results obtained from case 1 and case 2, it is evident that, despite the AUC value does not improve significantly, there is a significant reduction of the OI value, passing from 18% to 9% in 2009 and from 16% to 8% in 2010, and of the OI(5°) values, going from 25% to 13% (in 2009) and from 23% to 11% (in 2010).

4. Discussion and concluding remarks

The paper presented a comparison, within a study area located in southern Italy, between statistical and deterministic methods used as tools for shallow landslides susceptibility assessment in clayey soils. To this purpose, the information value method for the statistical analyses and TRIGRS for the deterministic analyses have been used at large scale

<table>
<thead>
<tr>
<th>TRIGRS – Case 1</th>
<th>Unit</th>
<th>Effective cohesion c’ (kPa)</th>
<th>Friction angle φ’ (°)</th>
<th>Soil depth h TRIGRS (m)</th>
<th>Hydraulic conductivity K TRIGRS (m/s)</th>
<th>Diffusivity D TRIGRS (m²/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>18</td>
<td>3</td>
<td>27</td>
<td>variable</td>
<td>5.00E−06</td>
<td>2.87-05</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TRIGRS – Case 2</th>
<th>Unit</th>
<th>Effective cohesion c’ (kPa)</th>
<th>Friction angle φ’ (°)</th>
<th>Soil depth h TRIGRS (m)</th>
<th>Hydraulic conductivity K TRIGRS (m/s)</th>
<th>Diffusivity D TRIGRS (m²/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>18</td>
<td>3</td>
<td>27</td>
<td>0.5-1.0</td>
<td>5.00E−06</td>
<td>2.87E−05</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>5</td>
<td>27</td>
<td>1.0-2.0</td>
<td>5.00E−07</td>
<td>3.49E−05</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>8</td>
<td>27</td>
<td>2.0-3.0</td>
<td>5.00E−07</td>
<td>3.49E−05</td>
<td></td>
</tr>
</tbody>
</table>

Fig. 8. Results of the TRIGRS analyses at 2009 and 2010 for case 1 and case 2: landslide susceptibility computational maps; receiver operating characteristic curves; values of statistical indicators of performance AUC, OI and OI(5°).
(1:5000). The information value method has been implemented using two dichotomous dependent variables (landslide inventories, years 2009 and 2010); TRIGRS model has been applied referring to two different geotechnical datasets (case 1 and case 2). In total, we obtained four landslide computational maps that have been compared by means of three indicators: AUC of the ROC curves, OI and OI(5°).

The very high values attained by the AUC testify the success of all the performed analyses. Indeed, independently from the method and the reference landslide inventory used, AUC is always > 90%, with values ranging from 95 to 96% for the statistical analyses and 91–92% for the deterministic analyses. The 90% AUC value is defined by Swets (1988) and Fressard et al. (2014) as a threshold to overcome for reaching the best class of accuracy for a model being tested. In particular Swets (1988) states that values between about 0.7 and 0.9 represent accuracies that are useful for some purposes, and higher values represent a rather high accuracy; whereas Fressard et al. (2014) state that values between 0.7 and 0.8 reflect a fair performance of the model, values between 0.8 and 0.9 can be considered good, and values above 0.9 can be considered excellent. To stress the relevance of the results obtained in this case study it is important to highlight that, within the literature dealing with landslide susceptibility and hazard assessment, few analyses report AUC values higher than 85% (e.g., Akgun, 2012; Yesilnacara and Topalb, 2005; Lee and Pradhan, 2006; Blahut et al., 2010; Yeon et al., 2010; Sterlacchini et al., 2011; Das et al., 2012) and even fewer AUC values higher than 90% (e.g., Lee et al., 2008; Bui et al., 2012; Marjanović, 2013; Nefeslioglu et al., 2008; Ciurleo et al., 2016).

The success of the analyses is also related to the values assumed by over-prediction indexes such as: the modified success rate, MSR (Huang and Kao, 2006); the false positive rate of the contingency table (Godt et al., 2008; Montrasio et al., 2011; Raia et al., 2013; Ciurleo et al., 2016); the error index, EI (Sorboro et al., 2010); the landslide potential, LP (Vieira et al., 2010); and the false alarm ratio, FAR (Liao et al., 2011). Among them, we choose the EI index, originally proposed by Sorboro et al. (2007, 2010) and named OI in this paper, in order to quantify the overestimation areas. In the case study, the area computed as unstable by the statistical analyses is equal to 1.5 km² (2009) and 1.8 km² (2010), while unstable TRIGRS cells involve an area of 1.4 km² (case 1) and 0.8 km² (case 2). These values, if compared with the inventoried ones (0.1 km² of triggering areas inventoried in 2009 and 0.2 km² in 2010), show a clear over-prediction ratio. This overestimation, identified by means of OI and OI(5°), is more evident for the statistical analyses and progressively decrease, moving from case 1 to case 2, when using TRIGRS. In particular, the statistical OI values are equal to 19% in 2009 and 21% in 2010, while the TRIGRS OI values range from 16% to 18% for case 1 and from 8% to 9% for case 2. The difference in the OI values becomes more evident when comparing the lowermost statistical OI(5°) value, equal to 27% (considering the 2009 landslides) with the lowermost OI(5°) value for the analyses with TRIGRS, equal to 11% (for case 2 in 2010). To explain these phenomena is properly characterized and used as input data.

In conclusion, the analyses performed over the same study area, to evaluate both the potentialities of the adopted methods and the consistency of the obtained results, indicate that statistical and deterministic analyses can be confidently developed at large scale for shallow landslide susceptibility assessment. The main results indicate that the statistical method provides shallow landslide susceptibility maps that are more conservative than those obtained by the physically-based model TRIGRS. The reliability of this latter progressively increases when the predisposing and triggering factors of the studied phenomena are properly characterized and used as input data.

References

Calvello, M., Cascini, L., Mastroianni, S., 2013. Landslide zoning over large areas from a sample inventory by means of scale-dependent terrain units. Geomorphology 182, 1–10.