Peripheral nerve injury has seriously affected people's health and life. Nerve growth factor (NGF) is essential for neurons to promote their development, differentiation, growth, regeneration and other functional properties. NGF is found to induce the growth of nerve fibers directionally [1, 2]. In the previous study, the graphene oxide/polyacrylamide (GO/PAM) composite hydrogels were successfully prepared, and it was found that the composite hydrogel with 0.4% GO (GO.4) could effectively promote the growth and proliferation of Schwann cells. However, the effect is weakened after long periods of culture [3]. Thus, in the present study, the GO/PAM composite hydrogel incorporated with nerve growth factor was further fabricated to study its effect on Schwann cells for long time culture. The contact angle measurements were employed to test whether the addition of NGF could promote hydrophilic properties of the original GO/PAM hydrogels. The mechanical property and the degradation behavior were also characterized. The release of NGF from GO/PAM hydrogels was measured. Furthermore, the composite hydrogel was co-cultured with Schwann cells to evaluate the effects of the composite hydrogel incorporated with NGF on the attachment and proliferation of Schwann cells thoroughly. The results showed that with the increasing contents of NGF, the surface of the composite hydrogel had no obvious changes. The hydrophobicity and mechanical properties of hydrogel also had a little difference. The release of NGF could be well and easily controlled by varying the fabrication parameters of the composite hydrogel. Besides, the co-culture of Schwann cells showed that the more incorporated NGF, the better growth they promoted. This study may provide an important theoretical basis for the design and development of tissue engineering scaffolds, and an understanding of nerve growth factor's application, which may have potential application for peripheral nerve regeneration.

Acknowledgements
This research was financially supported by National Natural Science Foundation of China (Projects 51233004, 51373168, 51390484 and 51403204).

References

doi:10.1016/j.jconrel.2017.03.101

Rapamycin loaded magnetic graphene oxide nanoparticles as tumor-targeted drug delivery system: synthesis and in vitro characterization

Zhide Zhoua†, Yong Huangb†, Jintao Lianga, Yulin Yuanb, Weizhi Moa, Guiyin Lic
aSchool of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin 541014, China
bDepartment of Clinical Laboratory, the People's Hospital of Guangxi Zhuang Autonomous Region, Nanning 530021, China
cCorresponding author.
E-mail address: liguiyin01@163.com (G. Li)

With the development of nanotechnology, many kinds of functional targeted nanoparticles have been applied for cancer treatment. Among these different nanoparticles, graphene oxide modified with iron oxide nanoparticles (Fe3O4/GO) have attracted much attention for applications in targeted drug delivery because they could carry drug molecules through π-π interactions, electrostatic attraction or chemical bond and could be magnetically guided to the targeted organs or lesion sites inside the body [1, 2]. Herein, the Fe3O4/GO nanoparticles were firstly prepared by hydrothermal method using FeSO4·7H2O as the iron source and H2O2 as the oxidant. Then, a tumor-targeted drug delivery system was designed using Fe3O4/GO as a platform and rapamycin (Rapa) as an anticancer drug (Fig. 1a). The results showed that the drug loading content and entrapment efficiency were 23.93 ± 3.72%, 91.68 ± 3.31%, respectively. The in vitro drug release profiles of Fe3O4/GO-Rapa nanocomposites exhibited a biphasic pattern with an initial fast release phase followed by a slower release phase at pH 7.4 (Fig. 1b). The Fe3O4/GO-Rapa could inhibit the proliferation and induce greater
apoptosis of HepG2 cells in comparison with free Rapa, which displayed time or concentration-dependent (Fig. 1c). Overall the preliminary studies showed that Fe3O4/GO-Rapa nanocomposites can be a potential candidate for magnetic-targeting tumor-specific drug delivery in the tumor diagnostic and therapy.

Keywords: magnetic graphene oxide nanocomposites, Rapamycin, in vitro drug release, cell vitality

Acknowledgements

This work was supported by the National Nature Science Foundation of China (No. 81372362 and No. 81460451), and the Appropriate health technology development project of Guangxi Zhuang Autonomous Region (No. S201422-03).

References

doi:10.1016/j.jconrel.2017.03.102

An intelligent doxorubicin prodrug with GRP78 recognition and sequential targeting ability to tumor cell membrane and nucleus

Guo-Bin Ding, **Junqing Sun**, **Zhuoyu Li**

Institute of Biotechnology, the Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, China

*Corresponding authors.
E-mail addresses: dinggb2012@sxu.edu.cn (G.-B. Ding), lzy@sxu.edu.cn (Z. Li)

Nanoscale drug delivery systems could endow the antitumor agents with passive and active targeting ability [1]. However, these nanomedicines developed to date mainly transport drugs to the cytoplasm rather than the nuclei, but the sites of action of many first-line anticancer drugs such as doxorubicin (DOX) and camptothecin (CPT) are localized in nucleus. GRP78 (glucose regulated protein of 78 kDa) is a member of the heat shock protein 70 (HSP70) family that mainly locates in endoplasmic reticulum (ER) and involves in protein folding and assembly. Recent evidence indicates that the overexpressed GRP78 can be translocated to cell surface. And the finding that cell-surface GRP78 is preferentially present in cancer cells makes it a potential target for cancer therapy [2]. Herein, an intelligent DOX prodrug (IDP) was synthesized by conjugating DOX and a bifunctional peptide (WIFPWIQLKKKRKVC) to the two end of heterofunctional poly(ethylene glycol) (Maleimide-PEG-COOH) (Fig. 1). The bifunctional peptide is composed of a GRP78 binding sequence WIFPWIQL and a nuclear localization signal sequence KKKRKVC. The IDP could efficiently and sequentially enter the tumor cell membrane and nucleus under the guidance of the bifunctional peptide as observed by confocal laser scanning microscope. In vitro antitumor study revealed that IDP exhibited an enhanced cytotoxicity against colorectal cancer cells (high level of cell surface GRP78). Further studies will be conducted to evaluate the in vivo antitumor efficiency of IDP. Together, these results demonstrate that the DOX prodrug developed in this study holds great promise to be used as an effective anticancer agent with negligible side effects.

Keywords: GRP78, doxorubicin, prodrug, sequential targeting

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 31500771) and Scientiﬁc and Technological Innovation Programs of Higher Education Institutions in Shanxi (STIP, No. 2015116).

References

doi:10.1016/j.jconrel.2017.03.103

Janus-faced and pH-responsive nanohybrids for synergistic targeted drug delivery

Shucheng Liu, **Jianming Pan**, **Xiaohui Dai**, **Fengxian Qiu**, **Yue Ma**, **Fan He**, **Guoqing Pan**

School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China

Nanoscale drug delivery systems could endow the antitumor agents with passive and active targeting ability [1]. However, these nanomedicines developed to date mainly transport drugs to the cytoplasm rather than the nuclei, but the sites of action of many first-line anticancer drugs such as doxorubicin (DOX) and camptothecin (CPT) are localized in nucleus. GRP78 (glucose regulated protein of 78 kDa) is a member of the heat shock protein 70 (HSP70) family that mainly locates in endoplasmic reticulum (ER) and involves in protein folding and assembly. Recent evidence indicates that the overexpressed GRP78 can be translocated to cell surface. And the finding that cell-surface GRP78 is preferentially present in cancer cells makes it a potential target for cancer therapy [2]. Herein, an intelligent DOX prodrug (IDP) was synthesized by conjugating DOX and a bifunctional peptide (WIFPWIQLKKKRKVC) to the two end of heterofunctional poly(ethylene glycol) (Maleimide-PEG-COOH) (Fig. 1). The bifunctional peptide is composed of a GRP78 binding sequence WIFPWIQL and a nuclear localization signal sequence KKKRKVC. The IDP could efficiently and sequentially enter the tumor cell membrane and nucleus under the guidance of the bifunctional peptide as observed by confocal laser scanning microscope. In vitro antitumor study revealed that IDP exhibited an enhanced cytotoxicity against colorectal cancer cells (high level of cell surface GRP78). Further studies will be conducted to evaluate the in vivo antitumor efficiency of IDP. Together, these results demonstrate that the DOX prodrug developed in this study holds great promise to be used as an effective anticancer agent with negligible side effects.

Keywords: GRP78, doxorubicin, prodrug, sequential targeting

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 31500771) and Scientiﬁc and Technological Innovation Programs of Higher Education Institutions in Shanxi (STIP, No. 2015116).

References

doi:10.1016/j.jconrel.2017.03.103