The pan-caspase inhibitor Emricasan (IDN-6556) decreases liver injury and fibrosis in a murine model of non-alcoholic steatohepatitis

Fernando J. Barreyro1,2, Silvia Holod2, Paola V. Finocchietto2, Alejandra M. Camino3, Jorge B. Aquino4, Alejandra Avagnina5, María C. Carreras2, Juan J. Poderoso2 and Gregory J. Gores6

1 Laboratory of Microbiology, Faculty of Chemical and Natural Sciences, National University of Misiones, CONICET (Consejo Nacional de Investigaciones Científicas y Técnicas), Posadas, Argentina
2 Laboratory of Oxygen Metabolism, University Hospital, University of Buenos Aires, Buenos Aires, Argentina
3 Laboratorio de Morfometría, DIM Clinica Privada, Buenos Aires, Argentina
4 Liver Unit, School of Medicine, Austral University, Buenos Aires, Argentina
5 Department of Pathology, University Hospital, University of Buenos Aires, Buenos Aires, Argentina
6 Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine, Rochester, MN, USA

Keywords: apoptosis – caspase inhibitor – Emricasan – fibrosis – non-alcoholic fatty liver disease

Abstract

Background & Aims: Hepatocyte apoptosis, the hallmark of non-alcoholic steatohepatitis (NASH) contributes to liver injury and fibrosis. Although, both the intrinsic and extrinsic apoptotic pathways are involved in the pathogenesis of NASH, the final common step of apoptosis is executed by a family of cysteine-proteases termed caspases. Thus, our aim was to ascertain if administration of Emricasan, a pan-caspase inhibitor, ameliorates liver injury and fibrosis in a murine model of NASH. Methods: C57/BL6j mice were fed regular chow or high fat diet (HFD) for 20 weeks. All mice were treated with vehicle or Emricasan. Results: Mice fed a HFD diet demonstrate a five-fold increase in hepatocyte apoptosis by the TUNEL assay and a 1.5-fold and 1.3-fold increase in caspase-3 and-8 activities respectively; this increase in apoptosis was substantially attenuated in mice fed a HFD treated with Emricasan (HFD-Em). Likewise, liver injury and inflammation were reduced in mice fed HFD-Em as compared to HFD by measuring serum aspartate aminotransferase and alanine aminotransferase levels, NAS histological score and IL-1β, TNF-α, monocyte chemoattractant protein (MCP-1) and C-X-C chemokine ligand-2 (CXCL2) quantitative reverse-transcription polymerase chain reaction (qPCR). These differences could not be attributed to differences in hepatic steatosis as liver triglycerides content were similar in both HFD groups. Hepatic fibrosis was reduced by Emricasan in HFD animals by decreasing α-SMA (a marker for hepatic stellate cell activation), fibrosis score, Sirius red staining, hydroxyproline liver content and profibrogenic cytokines by qPCR. Conclusion: In conclusion, these data demonstrate that in a murine model of NASH, liver injury and fibrosis are suppressed by inhibiting hepatocytes apoptosis and suggests that Emricasan may be an attractive antifibrotic therapy in NASH.
Non-alcoholic fatty liver disease (NAFLD) is currently the most common form of chronic liver disease, affecting 20–30% of the western countries population (1), and is closely associated with insulin resistance (IR) and overweight (2). A subset of these individuals, approximately 5%, develops hepatic inflammation and fibrosis, a syndrome referral as non-alcoholic steatohepatitis (NASH) (3). This hepatic inflammatory disorder can progress to cirrhosis, liver failure and hepatocellular carcinoma (4).

The mechanisms underlying the progression of simple steatosis to steatohepatitis are not known; however, it is recognized that hepatocyte apoptosis correlates with NASH. Indeed, apoptosis is a cardinal pathological feature of NASH and is associated with hepatic inflammation and fibrosis (5). Consistent with this concept, elevated serum cytokeratin-18 fragments (M30 Neo-epitopes), markers of hepatocyte apoptosis by caspase activation, distinguish simple hepatic steatosis from NASH (6).

Apoptosis, or programmed cell death, is a form of highly regulated cell death. Steatotic hepatocytes can undergo apoptosis via an extrinsic pathway activated by death ligands, Fas (5, 7) and tumour necrosis factor-related apoptosis-inducing ligand (TRAIL) (8–10) or via activation of the intrinsic pathway (11, 12), which can be triggered by intracellular stress of membrane-bound organelles, such as lysosomes (13), endoplasmic reticulum (ER) (14) and mitochondria (11). Both pathways of apoptosis converge on caspases activation which makes this pathway mechanically attractive by pharmacological inhibition. This group of proteases, term caspases (cysteinyl aspartate specific proteases), play a central role as executors of apoptosis. The caspases are constitutively expressed as inactive proenzymes and generally require proteolytic cleavage on the aspartic acid residue for their activation. Caspases are capable of self activation, as well as of activating each other in a cascade-like process. Among the 14 mammalian caspases identified to date, some are primarily involved in apoptosis (caspases-2, -3, -6, -7, -8, -9, -10 and -12) (15), and other caspases, such as caspases-1, -4, -5 and -11, are involved in inflammation (16). These caspases can be divided into initiator caspases or effector caspases. Initiator caspases (-2, -8, -9, -10) that are activated by death receptors; and effector caspases (-3, -6 and -7) that require cleavage by initiator caspases for their activation (17). On initiation of apoptotic cascades, activation of initiator caspases occur causing mitochondria dysfunction, with release of pro-apoptotic factors into the cytosol (e.g. cytochrome c, SMAC/Diablo, endonuclease G and AIF) (18). Cytosolic cytochrome c promotes activation of downstream effector caspases, cleavage of cellular targets and dismantle the cell causing characteristic apoptotic morphology. These apoptotic bodies are phagocytosed by adjacent cells, and it has been demonstrated that phagocytosis of apoptotic bodies by Kupffer cells (19) and hepatic stellate cells (HSC) (20) is one of the mechanisms that promote inflammation and fibrogenesis. Based on this concept, decreasing hepatocytes apoptosis by caspases inhibitors protects the liver in murine models of acute liver failure (21), and attenuates inflammation and fibrosis in murine models of cholestatic-(22), ethanol-(23) and methionine/choline deficient diet-induced (24, 25) liver injury. Thus, the use of a pan-caspase inhibitor could be an attractive therapeutic approach for various types of liver disease. However, its efficacy for long-term treatment such as NASH merits further evaluation.

Emricasan (IDN-6556) is an irreversible pan-caspase inhibitor, orally active that is retained in the liver for prolonged period of time (21, 26), which was evaluated in clinical trials for chronic liver disease (27, 28). Therefore, in this study, we examined the effect of the pan-caspase inhibitor Emricasan on liver injury and fibrosis in a diet-induced metabolic syndrome with NASH murine model. To address our aim, we formulated the following questions: Does the pan-caspase inhibitor (i) attenuate hepatocyte apoptosis and liver injury? (ii) reduce hepatic steatoesis? (iii) decrease hepatic inflammation? and (iv) attenuate hepatic fibrogenesis in diet-induced NASH model? The results demonstrate that in a murine model of NASH, liver injury and fibrosis are attenuated by inhibiting hepatocytes apoptosis and suggest that Emricasan may be an attractive anti-fibrotic therapy in NASH.

Experimental procedures

Reagents and diet

Sucrose, Direct red 80 and Fast-green FCF (colour index 42053) were obtained from Sigma (St. Louis, MO, USA). Emricasan (formerly named IDN-6556 or PF-03491390), was provided by Pfizer Inc. (Groton, CT, USA), was suspended in vehicle [2% (v/v) DMSO in 0.5% (w/v) methylcellulose] and administered to mice per os daily. The high fat diet (HFD) used was from Cathedra of Bromatology, Faculty of Pharmacy and Biochemistry, University of Buenos Aires (Cátedra de Bromatología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires), which contains 47% of calories from fat (mostly from Milk fat, 50% saturated fat) with 2% of cholesterol, 35% from carbohydrate (78% of carbohydrate from Sucrose) and 18% of calories from protein, and was designed to approximate the typical human diet from patients with NASH (29, 30).

Animals

Studies were performed in male C57BL/6J mice (Biotechnology Central, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires). All animals were maintained in a temperature (24°C) and light controlled (12:12 h light:dark) facility, and had free access to food and water. Animals were age-matched and used at approximately 12–16 weeks of age. Four groups were
studied ($n = 60$) with 15 mice per group. Groups 1 and 3 received regular chow. Groups 2 and 4 received HFD and 50 g/L (Sucrose) was added to drinking water for 20 weeks. Groups 3 and 4 received Emricasan 0.3 mg/kg/day per os, and Group 1 and 2 received the vehicle. The dosing was based on previous data (21) that demonstrates that oral administration of Emricasan at doses of 0.3 mg/kg corresponded to the ED90 value to prevent liver injury in the model of α-Fas-induced liver injury. Total body weight was measured at 0, 5, 10, 15 and 20 weeks. All protocols dealing with animals were reviewed and approved by the University of Buenos Aires Animal Studies Committee (CICUAL, Comité Institucional de Cuidado y Uso de Animales de Experimentación). This study followed the guidelines outlined in the National Institutes of Health Guide for the Care and Use of Laboratory Animals.

Serum and tissue analysis

Blood samples and liver tissue were collected under deep anaesthesia after a 8-h fast. Serum alanine aminotransferase (ALT), aspartate aminotransferase (AST), glucose and cholesterol levels were measured using Roche-Hitachi 911 Chemistry Analyzer (Hitachi, Japan). Plasma insulin was measured using a mouse insulin enzymelinked immunosorbent assay kit (Milipore, St. Charles, MO, USA). IR was calculated using the homeostasis model assessment of IR (HOMA-IR) (31). Whole liver were homogenized in 1 ml of cold lysis buffer [50 mM HEPES (pH 7.5), 150 mM NaCl, 1 mM ethylenediaminetetraacetic acid (EDTA), 2.5 mM ethyleneglycol tetraacetic acid (EGTA), 1 mM dithiothreitol, 10% glycerol, 1 mM phenylmethylsulfonyl fluoride (PMSF), 10 μg/ml each of aprotinin and leupeptin, 50 mM NaF and 0.1 mM sodium orthovanadate] per 100 mg of tissue (32). Homogenates were clarified by centrifugation at 10 000 × g for 10 min at 4°C and stored at −70°C. Thiobarbituric acid reactive substances (TBARS) assay were measured to quantify lipid peroxidation and tissue oxidative stress in whole liver homogenate using a colorimetric assay as described by Okhawa et al. (33). Commercial ELISA kits were used to measure hepatic levels of tumour necrosis factor alpha (TNF-α, Mouse TNF-α ELISA Kit, EZMTNFA; Milipore) and MCP-1 (Mouse MCP-1 Elisa kit, RAB0056; Sigma) following the manufacturers’ instructions. Hepatic lipid content was analysed for total triglycerides (TG) and cholesterol, briefly, frozen liver tissue (100 mg) was homogenized in 1.6 ml phosphate-buffered saline and protein concentration was determined using Bradford Protein Assay (Bio-Rad, Hercules, CA, USA). Lipid was extracted using chloroform:methanol (2:1) and 0.1% sulphuric acid as described (34). An aliquot of the organic phase was collected, dried with chloroform containing 1% Triton, and resuspended in water (final Triton concentration = −2%). TG content was determined using commercially available kits (Wako Chemicals, Richmond, VA, USA) in microtiter plates and normalized to protein concentration of the homogenate. The hepatic lipid concentration was expressed as μg of TG/mg of liver protein.

Terminal deoxynucleotidyl transferase–mediated dUTP nick-end labelling assay

Tissue sections (5 μm) were prepared, and terminal deoxynucleotidyl transferase dUTP nick-end labelling (TUNEL) assay was performed following manufacturer’s instructions (Apoptag Fluorescein In Situ Apoptosis Detection Kit; Chemicon, Billerica, MA, USA). Apoptotic cells were quantified by the TUNEL assay, which enzymatically labels free 3’-OH ends of damaged DNA with a fluorescently labelled nucleotide as we have previously described in detail (35). TUNEL-labelled cells (that is, fluorescent nuclei) were quantified by the number of positive cells per high-power field (HPF) being counted. A total of 10 HPF fields were analysed for each animal, using Nikon Eclipse E800 microscope (Nikon, Melville, NY, USA) coupled to a Nikon DN100 CCD camera. Data were expressed as the number of TUNEL-positive cells per 10 HPF fields.

α-SMA-smooth muscle actin staining

Livers were dissected and processed for paraffin inclusion. Five microm-thick sections of formalin-fixed, paraffin-embedded liver were used for α-SMA immunofluorescence staining. Slides were deparaffinized in xylene and serially rehydrated in graded ethanol (100 to 70%). Endogenous peroxidase was quenched with 0.5% hydrogen peroxide in 90% ethanol for 20 min. Prior to primary antibody incubation, endogenous avidin and biotin were blocked for 20 min using the Vector Laboratories blocking kit and unspecific binding of the antibody was subsequently blocked for 30 min in 1% BSA in PBS. Tissue was incubated overnight with a mouse monoclonal Cy3-coupled antismooth muscle actin antibody (α-SMA; 1/200; Sigma). After extensive washing, sections were coverslip-mounted for microscopic observation. As technical control, incubation with primary antibody was omitted rendering no significant staining. Pictures were taken using a Nikon DN100 CCD camera coupled to a Nikon Eclipse 800 fluorescence microscope. Quantitative analysis of immunohistochemical staining of αSMA was performed by computerized morphometric analysis (CMA). Approximately 100–200 microscopic field (400×) per specimen were captured and analysed using a colour threshold detection system developed in Matlab 6.0 (Mathworks, Inc., Natick, MA, USA). The results obtained were expressed as unit of α-SMA-positive area per field.

Assessment of liver fibrosis

Liver fibrosis was semiquantified using Sirius red staining as described by Camino et al. (36). Liver sections
were stained with picrosirius red staining, and red-stained collagen fibres were quantified by CMA. For CMA, whole liver samples were analysed with the exception of large centrilobular veins and large portal tract (≥150 μm). Two hundred light microscope images per specimen were captured and analysed using colour threshold detection system (Matlab 6.0; Mathworks, Inc.). The results were expressed as a percentage of positive area.

In addition, collagen deposition was measured by hydroxyproline assay as detailed previously (36). Briefly, hydroxyproline content was quantified colorimetrically in duplicate from 0.2 g liver sample at 557 nm from a standard curve the amino acid alone and against a blank reagent. The results were expressed as mg/g of liver tissue.

Histopathology
For histological review of haematoxylin and eosin (H&E)-stained liver sections by light microscopy (Eclipse; Nikon), the liver was fixed in 10% formalin buffer, and then embedded in paraffin. Tissue sections of 5-μm-thick were prepared and placed on glass slides. H&E and Mallory Trichrome staining were performed according to standard techniques. The slides were coded, without the pathologist knowing the specific treatment group that the slides represented. The histology was graded according to a number of histological features. Steatohepatitis was assessed using NAFLD activity score (NAS) by the modified semiquantitative Brunt score (37). This measures degree of steatosis (0 = <5%; 1: 5–33%; 2 = 33–66%; 3 = >66%), inflammation (0 = no foci; 1 = <2 foci per 200× field; 2 = 2–4 foci per 200× field; 3 = >4 foci per 200× field), and hepatocyte ballooning degeneration (0 = none; 1 = few balloon cells; 2 = many cells/prominent ballooning). Fibrosis was determined by the following scale, 0 = none; 1 = zone 3 only, perisinusoidal; 2 = zone 2–3, perisinusoidal; 3 = perisinusoidal and portal/periportal; 4 = bridging fibrosis; 5 = cirrhosis.

Analysis of caspase activation
For detection of the active form of caspases-3 and -8, colorimetric protease assay kits (Chemicon International, Inc.) were used. Proteins obtained from cytosolic extracts from liver tissue (100 μg) and were incubated with 200 μM DEVD-pNA (for caspase-3) or IETD-pNA (for caspase-8). The assay was based on the spectrophotometric detection of the chromophore p-nitroanilide (pNA) after cleavage from the labelled substrates. p-NA light emission was quantified using a microtiter plate reader at 405 nm. Comparison of the absorbance of p-NA from HFD-fed mice samples with regular chow-fed mice allowed determination of the fold increase in caspase activity (38), samples were evaluated in triplicate each.

Real-time polymerase chain reaction
Total RNA was extracted from liver tissue using the Tri- zol Reagent (Invitrogen, Carlsbad, CA, USA), and was reverse-transcribed into complementary DNA with M olooney leukaemia virus reverse transcriptase and random primers (both from Invitrogen). Quantification of the complementary DNA template was performed with real-time polymerase chain reaction (PCR) (MX3000P QPCR thermocycler; Stratagene) using SYBR green (Invitrogen) as a fluorophore. PCR primers (all obtained from Invitrogen) were as follows: murine αSMA Forward: 5′-ACT ACT GCC GAG CGT GAG AT-3′, Reverse: 5′-AAG GTA GAC AGC GAA GCC AG-3′; murine Collagen-1α Forward: 5′-GAA ACC CGA GGT ATG CTG TT-3′, Reverse: 5′-GAC CAG GAG GAC GAA GT-3′; murine Interleukin-1β Forward: 5′-GCC CAT CCT CTG TGA CTC AT-3′, Reverse: 5′-AGG CCA CAG GTA TTG TGT CG-3′; murine C/EBP homologous protein (CHOP) Forward: 5′-CTG CCT TTC ACC TTG GAG AC-3′, Reverse: 5′-CTG CCA GGG GTG ATG AGT AG-3′; murine transforming growth factor-β (TGF-β) Forward: 5′-CTG CCT TTC ACC TTG GAG AC-3′, Reverse: 5′-GCC TTA GTT TGG ACA GGA TCT G-3′; murine TNF-α Forward 5′-CCC TCA CAC TCA GAT CAT CCT CT-3′, Reverse: 5′-GCT ACG AGC TGG GCT AAT G-3′; murine tissue inhibitor of metalloproteinase type 1 (TIMP-1): Forward: 5′-CAT GGA AAG CCT CTG TGG ATA TG-3′, Reverse: 5′-GAT GTGCAA ATT TTC GCT TCT T-3′; murine CXCL-2: Forward 5′-CTC TCA AGG AGG ATG TGG ACA TT-3′, Reverse: 5′-CTA GAC AGC AGC GGA CAT GAG AT-3′; murine MCP-1: Forward 5′-CTG GGC TCT GCC TGGA CTT CT-3′; Reverse: 5′-CACC GCC TAC TCA TTG GGA TCA TGA-3′. As an internal control, primers from murine β-Actin were used as follows: Forward: 5′-TTC TAC AAT GAG CTG GCT GT-3′, Reverse: 5′-CTA GCC TCA GTG ATG TGA T-3′. Total RNA was extracted from liver tissue using the Tri-zol Reagent (Invitrogen, Carlsbad, CA, USA), and was reverse-transcribed into complementary DNA with Moloney leukaemia virus reverse transcriptase and random primers (both from Invitrogen). Quantification of the complementary DNA template was performed with real-time polymerase chain reaction (PCR) (MX3000P QPCR thermocycler; Stratagene) using SYBR green (Invitrogen) as a fluorophore. PCR primers (all obtained from Invitrogen) were as follows: murine αSMA Forward: 5′-ACT ACT GCC GAG CGT GAG AT-3′, Reverse: 5′-AAG GTA GAC AGC GAA GCC AG-3′; murine Collagen-1α Forward: 5′-GAA ACC CGA GGT ATG CTG TT-3′, Reverse: 5′-GAC CAG GAG GAC GAA GT-3′; murine Interleukin-1β Forward: 5′-GCC CAT CCT CTG TGA CTC AT-3′, Reverse: 5′-AGG CCA CAG GTA TTG TGT CG-3′; murine C/EBP homologous protein (CHOP) Forward: 5′-CTG CCT TTC ACC TTG GAG AC-3′, Reverse: 5′-GCC TTA GTT TGG ACA GGA TCT G-3′; murine TNF-α Forward 5′-CCC TCA CAC TCA GAT CAT CCT CT-3′, Reverse: 5′-GCT ACG AGC TGG GCT AAT G-3′; murine tissue inhibitor of metalloproteinase type 1 (TIMP-1): Forward: 5′-CAT GGA AAG CCT CTG TGG ATA TG-3′, Reverse: 5′-GAT GTGCAA ATT TTC GCT TCT T-3′; murine CXCL-2: Forward 5′-CTC TCA AGG AGG ATG TGG ACA TT-3′, Reverse: 5′-CTA GAC AGC AGC GGA CAT GAG AT-3′; murine MCP-1: Forward 5′-CTG GGC TCT GCC TGGA CTT CT-3′; Reverse: 5′-CACC GCC TAC TCA TTG GGA TCA TGA-3′. As an internal control, primers from murine β-Actin were used as follows: Forward: 5′-TTC TAC AAT GAG CTG GCT GT-3′, Reverse: 5′-CTA GCC TCA GTG ATG TGA T-3′. After electrophoresis in 1.5% agarose gel, each expected base pair PCR product was cut out and eluted into Tris-HCl using a DNA elution kit (Gel extraction kit; Qiagen, Valencia, CA, USA). The concentrations of extracted PCR products (copies per microlitre) were measured using a spectrophotometer at 260 nm and were used to generate standard curves. The inverse linear relationship between copy and cycle numbers was then determined. Each resulting standard curve was then used to calculate the number of copies per microlitre in experimental samples. The relative expression level of each product was expressed as a ratio of β-Actin copies of PCR Product for each sample. Data were expressed as fold change from regular chow-fed mice.

Statistical analysis
All data represent are expressed as the mean ± 95% CI for mean, or otherwise indicated. Differences between groups were compared by an analysis of variance analysis followed by a Bonferroni Student–Newman–Keuls test, parametric test or the Kruskal–Wallis non-parametric
test. Differences were considered to be statistically significant at $P < 0.05$.

Results

Is liver injury attenuated in Emricasan-treated HFD-fed mice?

We first examined the effects of the pan-caspase inhibitor Emricasan on hepatocyte apoptosis in C57BL/6J mice fed a HFD. Hepatocyte apoptosis was assessed by TUNEL assay and caspase-3 and -8 activities were evaluated to determine the efficiency of the pharmacological caspase inhibition by Emricasan (Fig. 1). TUNEL-positive cells were considerably increased by five-fold in mice fed a HFD and were reduced under Emricasan treatment (Fig. 1A,B). In accordance with this observation caspase-3 and -8 were increased in HFD-fed mice by 1.5- and 1.3-fold respectively and were significantly decreased by Emricasan treatment (Fig. 1C,D). To further evaluate the effects of the pan-caspase inhibitor in reducing liver injury, we next examined liver histology score, serum AST and ALT values in HFD-fed mice treated with vehicle or Emricasan. Histopathological examination of liver specimens demonstrated increased histological parameters of liver injury as assessed by NAS in the mice fed a HFD (Fig. 2). In accord with this observation, serum AST and ALT were three to five-fold higher in HFD than regular chow-fed mice, and the Emricasan-treated group showed a significant decrease in AST and ALT serum levels (Fig. 3A,B). Also, Lipid peroxidation was assessed as a surrogate for hepatic oxidative stress-mediated liver injury. Significantly higher levels of TBARS were detected in HFD-fed animals compared to regular chow diet, and the Emricasan treatment significantly reduced TBARS (Fig. 3C).

Next, we evaluated the effect of Emricasan on features of metabolic syndrome and hepatic steatosis. Mice fed a HFD had significantly increased weights, associated with hyperglycaemia, hyperinsulinaemia and hypercholesterolaemia as compared with regular chow-fed mice (Table 1). Moreover, HFD-fed mice had dramatically induced fat accumulation, increasing the score of steatosis (Fig. 2) and hepatic content of TG and cholesterol (Table 1). Treatment with Emricasan did not significantly impact features of metabolic syndrome, IR or hepatic steatosis. Collectively, these data indicate a pathogenic role for caspase-mediated hepatocyte apoptosis in liver injury in a NASH murine model and demonstrate that the pan-caspase inhibitor Emricasan decreases liver injury but not metabolic derangement in NASH.

Is hepatic inflammation reduced in Emricasan-treated HFD-fed mice?

To examine the changes of hepatic inflammation in HFD-fed mice under Emricasan treatment, key media-
tors of inflammation (TNF-α, IL-1β, interleukin 1 beta), monocyte and neutrophil infiltration (MCP-1, CXCL2) were quantified at protein level and messenger RNA transcripts using quantitative reverse-transcription polymerase chain reaction (qPCR). In HFD-fed mice, the inflammatory mediators TNF-α, IL-1β, MCP-1 and CXCL2 were significantly increased compared with Emricasan-treated HFD-fed animals (Fig. 4A–F). Consistent with these results, histological examination of inflammation score demonstrated a clear decrease in inflammatory foci in Emricasan-treated mice compared with vehicle-treated HFD mice (Reg Chow: 0.3 ± 0.1, HFD: 2.2 ± 0.2*, HFD-Emricasan: 0.6 ± 0.2) (Fig. 2). Indeed the overall NAS score showed a protective effect by Emricasan treatment (Reg Chow: 0.5 ± 0.1, HFD: 6.1 ± 0.3*, HFD + Emricasan: 3.2 ± 0.4) (Fig. 2). These results were confirmed at the cellular level by performing α-SMA immunohistochemistry. Consistent with the mRNA data, the number of α-SMA-positive cells was increased along hepatic sinusoid lining cells in HFD-fed mice, and was dramatically reduced in drug-treated HFD mice and was confirmed by morphometric analysis (Fig. 5B, Table 1). Is hepatic fibrogenesis attenuated in Emricasan-treated HFD-fed mice?

To investigate if the reduction in liver injury in HFD-fed mice with Emricasan is significant, it should also translate into reduced hepatic fibrogenesis. Because phagocytosis of apoptotic bodies promotes myofibroblastic transformation of HSC, we next evaluated α-SMA expression, an established marker for HSC activation in NASH (39), by quantifying messenger RNA (mRNA) transcripts with qPCR analysis. In HFD-fed animals, α-SMA mRNA transcripts were significantly reduced by 80% in Emricasan-treated HFD-fed animals compared with vehicle-treated HFD mice (Fig. 5A). In contrast, the transcripts for α-SMA were significantly reduced by 80% in Emricasan-treated HFD-fed animals compared with vehicle-treated HFD mice (Fig. 5A). These results were confirmed at the cellular level by performing α-SMA immunohistochemistry. Consistent with the mRNA data, the number of α-SMA-positive cells was increased along hepatic sinusoid lining cells in HFD-fed mice, and was dramatically reduced in drug-treated HFD mice and was confirmed by morphometric analysis (Fig. 5B, Table 1).
C). To ascertain whether other markers for HSC activation were also reduced in Emricasan-treated HFD mice, transcripts for molecules implicated in fibrogenesis were quantified. TGF-β and TIMP-1, pivotal cytokines in promoting fibrogenesis, were also increased in HFD animals vs. Emricasan-treated HFD mice (Fig. 6A, B).

To determine if the reduced α-SMA expression was accompanied by changes in liver fibrosis, collagen-1α (I) mRNA expression, the principal form of collagen in hepatic cirrhosis, was determined using qPCR technology. Indeed, collagen-1α was clearly increased by five-fold in HFD-fed mice vs. Emricasan-treated mice (Fig. 7B). Furthermore, liver specimens were analysed by Mallory’s trichrome and collagen deposition was stained using Sirius red and quantified by digital image analysis (Fig. 7A). Liver histology evaluation by Mallory’s trichrome observed evidence of perisinusoidal and pericellular fibrosis in HFD animals, as expected in NASH; in comparison, the amount of fibrosis was significantly reduced in HFD-fed mice treated with Emricasan (Modified fibrosis score: HFD: 2.3 ± 0.3 vs. HFD-Emricasan: 0.3 ± 0.2, P < 0.0001), and no fibrosis was observed in regular chow-fed mice (Fig. 7A, C). Sirius red staining showed significant collagen staining like ‘chicken wire’ along sinusoids (perisinusoidal) and around hepatocytes (pericentral) in HFD-fed mice; however, the quantity of collagen was again significantly reduced in Emricasan-treated mice (Fig. 7A, D). Accordingly, the biochemical assessment of hydroxyproline showed a marked increase in the mean hydroxyproline levels by eight-fold in HFD-fed animals than in the Emricasan-treated mice (Fig. 7E).

Collectively, these observations suggest that, in the murine NASH model, stellate cell activation and hepatic fibrogenesis are attenuated by administration of the pan-caspase inhibitor Emricasan.

Discussion

The principal findings of this study pertain to the role of caspase inhibition as a therapeutic pharmacological target in a murine model of metabolic syndrome with NASH. We demonstrate that prolonged pharmacological inhibition of caspases has a beneficial effect in NASH.
by reducing hepatocyte apoptosis and decreasing liver injury, hepatic inflammation and markedly reducing HSC activation and fibrogenesis. Together these observations suggest caspase activation has a clear pathogenic role in NASH and a treatment that inhibits hepatocyte apoptosis might limit hepatic injury and attenuate progression of fibrosis in NASH, a highly prevalent disease with no effective pharmacological therapy.

In this study, we used a HFD that recapitulates the clinical findings in human NASH such as obesity and IR (29, 30). This diet also was enriched in fructose and cholesterol, two key components of the western diet-induced NASH (40, 41) that are associated with liver injury (42, 43), inflammation (44, 45) and fibrosis (46, 47). Moreover, in our study the histopathological analysis of the liver specimens from HFD-fed mice depicts the characteristic features of NASH which are para-acinar steatosis, cellular ballooning, acinar inflammation, hepatocyte apoptosis, perisinusoidal and pericellular fibrosis (5, 48). Thus, our diet-induced NASH is a useful tool to examining therapeutic approaches during metabolic disturbances.

Apoptosis has been implicated as cardinal feature of NAFLD by serological markers and liver tissue analysis, where it correlates with histological severity and fibrosis progression (5, 6). Hepatocyte apoptosis in vitro and in murine models of steatohepatitis is mediated in part by the activation of the extrinsic pathway of apoptosis by death receptor Fas (5, 49) and TRAIL-DR4/TRAIL-DR5 (8–10), that can be activated by their ligands but also the toxic saturated fatty acid palmitate can activate TRAIL-DR5 by clustering (50) and augment the FADD-recruitment and caspase-8 activation of Fas by palmitoylation (51). In vitro studies demonstrate that free fatty acids induce hepatocyte apoptosis by activation of the intrinsic pathway; the saturated fatty acids trigger

Fig. 4. Hepatic inflammatory mediators are reduced in Emricasan-treated HFD-fed mice. (A) TNF-alpha mRNA and (B) TNF-alpha protein level values were measured by qPCR and ELISA. (C) MCP-1 mRNA and (D) MCP-1 protein level were measured by qPCR and ELISA. (E) CXCL2 mRNA and (F) IL-1β mRNA were quantified by qPCR. Data are expressed as the mean ± 95% CI for mean. *P < 0.05. Regular chow-fed mice (C), High Fat Diet-fed mice (HFD) and Emricasan-treated High Fat Diet-fed mice (HFD + Emricasan).
ER stress-associated c-Jun-N-terminal kinase (JNK) and CHOP activation engage apoptosis by enhancing expression and function of pro-apoptotic members of the Bcl-2 family, PUMA (12, 52) and Bim (53, 54). Both apoptotic pathways converge on caspase activation to induce cell death, and based on this concept the use of pharmacological inhibition of caspase is a useful tool to reduce hepatocyte apoptosis. In this study, we demonstrate a significant increase in hepatocyte apoptosis and caspase activation in the NASH model of HFD-fed mice, and the treatment with Emricasan, a pan-caspase inhibitor, abrogates liver cell apoptosis and caspase activation evaluated by TUNEL assay and caspase-3 and -8 activities. Our observations support previous in vitro studies that showed FFA mediated cytotoxicity was completely blocked by a pan-caspase inhibitor (11) and a NASH clinical trial where use of the caspase inhibitor GS-9450 decreased cytokeratin-18 fragments, a serum marker of hepatocytes apoptosis (55).

ER stress-associated c-Jun-N-terminal kinase (JNK) and CHOP activation engage apoptosis by enhancing expression and function of pro-apoptotic members of the Bcl-2 family, PUMA (12, 52) and Bim (53, 54). Both apoptotic pathways converge on caspase activation to induce cell death, and based on this concept the use of pharmacological inhibition of caspase is a useful tool to reduce hepatocyte apoptosis. In this study, we demonstrate a significant increase in hepatocyte apoptosis and caspase activation in the NASH model of HFD-fed mice, and the treatment with Emricasan, a pan-caspase inhibitor, abrogates liver cell apoptosis and caspase activation evaluated by TUNEL assay and caspase-3 and -8 activities. Our observations support previous in vitro studies that showed FFA mediated cytotoxicity was completely blocked by a pan-caspase inhibitor (11) and a NASH clinical trial where use of the caspase inhibitor GS-9450 decreased cytokeratin-18 fragments, a serum marker of hepatocytes apoptosis (55).

In liver, hepatocyte apoptosis has been linked to inflammation and fibrogenesis. The mechanisms by which apoptosis promotes inflammation relate to the engulfment of apoptotic bodies by monocyte/macrophage resident cells (Kupffer cells), engaging their activation and expression of death ligands (TNF-α, TRAIL and FasL) (19), pro-inflammatory cytokines and chemokines (56). These recruit and activate inflammatory cells that may further aggravate liver inflammation, what is called the second phase of injury. In contrast to a decreased liver injury, we failed to observe a reduction in hepatic steatosis. This is not unexpected, since TG synthesis has been suggested as a protective mechanism against lipotoxicity (57). Indeed, these observations is in accord with Anstee et al. (25) that using a mice fed a HFD under the pan-caspase inhibitor VX-166 showed a marked decreased in hepatocyte apoptosis with no effect on liver steatosis, also in a NASH clinical trial (55) no effect was observed in parameters associated with metabolic syndrome using a pan-caspase inhibitor GS-9450. Our study is consistent with an anti-inflammatory effect of pan-caspase inhibitor treatment. In mice fed a HFD, we observed a clear inflammatory

Fig. 5. HSC activation is attenuated in Emricasan-treated HFD-fed mice. (A) mRNA was extracted from livers, αSMA mRNA expression, a marker of HSC activation, was quantified by qPCR. Fold induction was determined after normalization to Actin. (B) Representative photomicrographs after immunofluorescence for αSMA are depicted (magnification 400×). (C) Morphometric analysis of quantification αSMA + area is shown. Data are mean ± standard deviation. Asterisks indicate P < 0.05. Regular Chow-fed mice (C), High Fat Diet-fed mice (HFD) and Emricasan-treated High Fat Diet-fed mice (HFD + Emricasan).
milieu, with increased inflammatory foci in liver specimens, oxidative stress and elevated level of pro-inflammatory cytokines TNF-α and IL1-β, and chemokines CXCL2 and MCP-1. The pan-caspase inhibitor abrogates the induction of the pro-inflammatory cytokines and chemokines by HFD, and markedly reduced the inflammatory score of liver sections. Possibly, this phenomenon could be associated with inhibition of pro-inflammatory caspases, like caspase-1, -4, -5 and -11. In this way, recent data support a pro-inflammatory caspases, like caspase-1, -4, -5 and -11. In this way, recent data support a pro-inflammatory cytokine expression and marked improvement in fibrosis. Canbay et al. (22), reported in a murine model of cholestasis, using bile duct ligation, a marked reduction in HSC activation and collagen-1α deposition. Our study, using a HFD induced NASH with prolonged Emricasan treatment, demonstrated a significant inhibition of HSC activation, reduced profibrogenic cytokine expression and marked improvement in fibrosis by reduced collagen-1α deposition and hydroxyproline liver content. The mechanism involved in this antifibrotic effect perhaps is related to the anti-inflammatory and antihepatocyte apoptotic effect offered by pan-caspase inhibition. In this way, by reducing apoptotic bodies and decreasing the secondary inflammatory response, HSC activation is abolished and liver fibrosis prevented. The limits of the present study pertain to the experimental model used; we administered Emricasan in conjunction with the HFD, leaving the question if the previously deposited collagen could be improved or not in well-established fibrosis. One possibility is that Emricasan, by limiting further injury, prevents inflammatory cell recruitment/activation, decreases the expression of TIMP-1, promotes HSC apoptosis and enhances matrix resorption (63–65). Additional studies using models of chronic fibrosis and cirrhosis will be necessary to evaluate the effects of Emricasan in established fibrotic models.

Although long-term use of anti-apoptotic agents raises the theoretical concern of increased risk of neo-
plastic transformation, this is unlikely. Although physiologically apoptosis helps protect from cancer, excessive apoptosis might, at least in some experimental situations, enhance neoplastic transformation (66). This was depicted by Weber et al., in mice lacking the anti-apoptotic factor myeloid cell leukaemia-1 (Mcl-1), have increased apoptosis, cell turnover, which translates into development of malignant HCC-like lesions (67). Also, in the transgenic mice that over expressed Bcl-2 in the liver, HCC was prevented in transforming growth factor-alpha-induced genetic mouse model of HCC (68). Consistent with this data, deletion of pro-apoptotic BH-3-only protein PUMA protect against diethyl nitrosamine (DEN) induced liver cancer (69). Moreover, loss of the death receptor Fas also inhibits DEN induced carcinogenesis (70). Along these lines, knockout murine models of various death receptors do not develop spontaneous cancers. Based on this concept, persistent hepatocyte apoptosis promotes inflammation and associated compensatory cellular proliferation, increasing the risk of hepatic carcinogenesis. Thus, abrogating apoptosis in chronic liver inflammation by cas-
Emricasan attenuates liver injury in NASH

Barreyro et al.

Phase inhibitors should be safe with regard to cancer risk. Extrapolation of these interesting findings to human disease states should be carefully addressed in future investigations of this class of drugs.

In summary, our results suggest the following scenario of liver protection by Emricasan in NASH: in the murine model of HFD-diet induced NASH, cell damage or cell death products result in the production by inflammatory cells of pro-inflammatory cytokines and chemokines, triggering a pro-inflammatory milieu that further increases hepatocyte damage and inflammation. This phenomenon activates HSC by phagocytosis of apoptotic bodies and releasing of the profibrogenic cytokines by inflammatory cells, thus accelerating production of extracellular matrix by collagen-1α, TIMPs and cytokines and promoting liver fibrosis of the liver. The pan-caspase inhibitor Emricasan was found to suppress hepatocyte apoptosis by blocking pro-apoptotic caspases; this decrease in cell damage and the inhibition of pro-inflammatory caspases may then interrupt the inflammatory milieu and prevent a profibrogenic process and activation of HSC. Therefore, the use of a pan-caspase inhibitor might provide an attractive antifibrotic therapy in NASH.

Acknowledgements

Dr Barreyro thank Prof Raul Marucci, Prof Juan Sorda and Dr Esteban Gonzalez Ballerga for their strong support.

Financial support: This study was supported by a grant from Agencia Nacional para la Promocion Cientifica y Tecnologica (Foncyt, PICT-O UNAM-2011). The funder had no role in study design, data collection and analysis, decision to publish or preparation of the manuscript.

Conflict of interest: The authors do not have any disclosures to report.

References

