Anti-Tumour Treatment

Targeting the programmed death-1 pathway in lymphoid neoplasms

Chi Young Ok*, Ken H. Young*

The Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA

A R T I C L E I N F O

Article history:
Received 24 September 2016
Received in revised form 23 January 2017
Accepted 29 January 2017

Keywords:
Lymphoid neoplasms
PD-1
PD-L1
PD-L2
Immune checkpoint

A B S T R A C T

Programmed death-1 (PD-1) is a co-inhibitory molecule and is seen in CD4+ and CD8+ T cells. Upon binding to its ligands, programmed death ligand-1 (PD-L1) and -2 (PD-L2), PD-1 negatively regulates interleukin 2 (IL-2) production and T cell proliferation. Activated effector T-cells, which kill cancer cells, can be affected by PD-1 signaling in some lymphoid neoplasm that express PD-L1 or PD-L2. PD-L1 expression in tumor cells can be induced by extrinsic signal (i.e. interferon gamma) or intrinsic signals, such as genetic aberrations involving 9p24.1, latent Epstein–Barr virus infection, PD-L1 3' - untranslated region disruptions, and activated Janus kinase/signal transducer and activator of transcription (JAK/STAT) pathway. Anti-PD-1 therapy improves the overall response rate to treatment in patients with lymphoid neoplasms, particularly relapsed/refractory classical Hodgkin lymphoma. Inspired by their success in treating patients with classical Hodgkin lymphoma, medical practitioners have expanded PD-1 therapy, given as a single therapy or in combination with other drugs, to patients with other types of lymphoma. In this review, current clinical trials with anti-PD-1 or anti-PD-L1 drugs are summarized. The results of numerous clinical trials will broaden our understanding of PD-1 pathway and shall expand the list of patients who will get benefit from these agents including those who suffer from lymphoid neoplasms.

Introduction

T cell activation is explained by the two-signal model proposed by Bretscher and Cohn (Fig. 1) [1]. The first signal, which triggers T cell receptor (TCR) signaling, occurs when the major histocompatibility complex (MHC) molecule of an antigen-presenting cell (APC) presents a processed antigen to the TCR of a T cell. The second signal, which is an antigen-independent, co-stimulatory or co-inhibitory signal delivered by the APCs, modulates TCR signaling and determines the T cell's fate. The prototypical molecule of the second signal is CD28, which constitutively expressed in resting naïve T-cells [2]. CD28's ligands (such as B7-1 or B7-2) induce cell-cycle progression, interleukin-2 (IL-2) production, and clonal expansion. If T cells do not receive co-stimulatory second signals from molecules like CD28, they become anergic. In contrast, cytotoxic T-lymphocyte antigen-4 (CTLA-4), which shares the same ligands with CD28, is a co-inhibitory receptor on T-cells that induces T-cell tolerance [3]. If T cells do not receive co-inhibitory second signals, fatal lymphoproliferation and multiorgan autoimmunity can occur in mice [4]. Additional second-signal receptors and ligands, which are collectively called B7-CD28 family, have also been discovered and include programmed death ligand-1 (PD-L1) and PD-L2. Unlike B7-1 and B7-2, PD-L1 and PD-L2 do not bind to CD28 or CTLA-4. Instead, they bind to programmed death-1 (PD-1) on T-cells.

The PD-1 pathway has recently emerged as an attractive target in cancer immunotherapy. In the context of the cancer-immunity cycle, the aim of immunotherapy is to restore immune function at various steps of cancer-immunity cycle. Several clinical studies have shown that blocking the PD-1 pathway leads to significant responses in patients with various solid tumors [5]. Numerous clinical trials with PD-1 pathway blocking agents, used either alone or in combination with other therapies, are currently in progress. In this review, we discuss the functions of the PD-1 pathway in the cancer-immunity cycle, the armamentarium of PD-1 pathway blocking agents, current and prior clinical trials in patients with lymphoid malignancies and future directions in research.

The structure of PD-1, PD-L1, and PD-L2

PD-1 is a protein encoded by the 5-exon PDCD1 gene on chromosome 2q37.3. It consists of 288 amino acids, and its calculated molecular weight is 31.6 kDa. However, Agata et al's [6] immuno-
precipitation of the protein revealed broad bands with molecular weights of 50–55 kDa, suggesting that the protein is heavily glycosylated. PD-1 contains a single immunoglobulin V-like domain, a transmembrane domain, and an intracellular domain with an immunoreceptor tyrosine-based inhibitory motif (ITIM) [7,8].

Two PD-1 ligands, PD-L1 and PD-L2, have structures similar to that of PD-1 in that they contain an immunoglobulin V-like domain, an immunoglobulin C-like domain, a transmembrane domain, and an intracellular domain [9]. These ligands interact with PD-1 via their immunoglobulin V-like domains. PD-L1 is encoded by the 8-exon CD274 gene on chromosome 9p24.1, is composed of 290 amino acids, and has a molecular weight of 33.3 kDa. Of note, it also competitively binds to B7-1, thus inhibiting the CD28-mediated co-stimulation of T-cells [10].

PD-L2 is encoded by the 7-exon PDCD1LG2 gene, and is located 42 kilobases apart from the CD274 gene on chromosome 9p24.1. It consists of 273 amino acids, and its molecular weight is 31.0 kDa [11].

The PD-1 signaling pathway

PD-1 is present on T-cells as a monomer and is a negative regulator of IL-2 production and T-cell proliferation [12,13]. PD-1 inhibition of antigen receptor signaling is only seen when PD-1 ligation occurs close to the site of antigen receptor engagement [13]. Indeed, it has been observed that randomly located PD-1 migrates to the immunological synapse during the interaction between T cell and APC [14]. Once PD-1 has bound to ligands, its ITIMs and ITSMs are phosphorylated by the Src-family tyrosine kinases (Fig. 2). The phosphorylated tyrosine residue subsequently recruits Src homology 2 domain-containing phosphatases (SHPs), which dephosphorylate signaling intermediates and down-regulate TCR signaling. Of note, ITIM recruits only SHP-2, but ITSM recruits both SHP-1 and SHP-2 [15,16]. SHP-2 appears to be more important than SHP-1 in PD-1 signaling because T cell stimulation with PD-L2 increases the amount of SHP-2 but not of SHP-1 [17]. In addition, ITSM is more important than ITIM in PD-1 signaling because PD-1’s inhibitory function is lost when ITSM is mutated but not when ITIM is mutated [15,18,19].

PD-1 inhibits phosphatidylinositol 3-kinase (PI3K)/Akt pathway by thwarting CD28-mediated activation of PI3K via ITSM. In contrast, CTLA-4 bypasses PI3K and instead halts Akt induction via the intracellular serine/threonine phosphatase PP2A [20]. PD-1 can also block the RAS/MEK/Erk pathway. Of interest, PD-1 inhibits the PI3K/Akt pathway within minutes, whereas it takes a few hours for it to block the RAS/MEK/Erk pathway [17]. Ultimately, PD-1’s inhibition of both of these pathways halts cell cycle progression [21]. In addition, PD-1’s inhibition of the PI3K/Akt pathway prevents T cell’s expression of the anti-apoptotic protein Bcl-xl, which depends upon PI3K [20]. PD-1 also hinders phosphorylation of ZAP70, an essential molecule for T-cell activation; inhibits activation of PKC-ζ, which is critical for IL-2 production, cell cycle progression and T-cell activation; and prevents effector T-cell development by inhibiting glycolysis and promoting fatty acid oxidation [16,22,23]. Of note, PD-1 mediated inhibitory signals are inversely associated with the strength of the TCR signal. Furthermore, PD-1 inhibition can be overcome by T cell stimulation with CD28 or exogenous IL-2 [24].

The PD-1 pathway plays an important role in enabling tumor cells to evade the immune response. The rate of tumor lysis by cytotoxic T cells (CTLs) in vitro was lower in P815 murine mastocytoma tumor cells with transgenic expression of PD-L1 than in parental tumor cells without PD-L1 expression. Furthermore, inoculating syngenic BALB/c mice with PD-L1 expressing myeloma cells led to more rapid tumor growth, an outcome which was then suppressed by anti-PD-L1 antibodies [25]. Similarly, another study with a mouse model showed that PD-L1 expression in tumor cells confers resistance to activated CTLs but that this effect could be overcome with anti-PD-L1 or anti-PD-1 antibodies [26]. In addition, Dong et al’s [27] study showed that PD-L1 expression in a melanoma cell line (624mel) enhanced apoptosis of PD-1-expressing CTLs.
Expression of PD-L1 in lymphoid malignancies

In contrast to the infrequent PD-L1 expression in normal tissue, immunohistochemistry shows that expression of PD-L1 is often found in a variety of cancers [5]. However, the expression pattern of PD-L1 in tumor cells is not uniform. In some tumors, heterogeneous expression of PD-L1 is seen at the interface of the tumor and tumor-infiltrating lymphocytes (TILs) [35]. In such cases, PD-L1 expression is likely to be induced by IFN-γ secreted from the TILs [36]. Homogeneous expression of PD-L1 is observed in other tumors, particularly in the Reed-Sternberg (RS) cells of classical Hodgkin lymphoma (CHL) [37]. Homogeneous PD-L1 expression usually correlated with intrinsic signals, which are reviewed below. The underlying mechanisms of PD-L1 expression are different in each type of cancer, and antibodies targeting different domains of PD-L1 have been used in various studies (Table 1) [35,37,38]. Furthermore, companion diagnostic assays were developed specifically for trials of particular anti-PD-1 or anti-PD-L1 agents, including 22C3 for pembrolizumab, 28-8 for nivolumab, and SP142 for atezolizumab [35,39,40]. Therefore, PD-1 pathway investigators should pay attention to antibody types when designing a study or interpreting clinical trial results.

As determined by immunohistochemistry, PD-L1 expression is present in CHL; in 87% of CHL cases, irrespective of subtype, over half of RS cells are PD-L1-positive [41]. A recent study demonstrated that almost all (97%) patients with CHL harbored either polysomy, copy-number gain or amplification of 9p24.1 detected by fluorescence in situ hybridization (FISH) [42]. In approximately 40% of CHL cases of the nodular sclerosis subtype, the RS cells have copy number alterations (amplifications or gains) and/or translocations involving 9p24.1 (PD-L1/9p24.1 [43]. Furthermore, Green and colleagues demonstrated that amplification of PD-L2 not only increases the genetic dosage of PD-L1/9p24.1 but also induces JAK2 amplification and, consequently, enhancement of JAK/STAT signaling [43]. Since PD-L1 has a promoter which is responsive to Janus kinase/signal transducer and activator of transcription (JAK/STAT) signaling pathway, extra signaling for PD-L1 expression is present in CHL. Advanced stage (stages III/IV) CHL patients with 9p24.1 amplification have significantly shorter progression-free survival [42].

Copy number alterations and/or translocations involving 9p24.1/PD-L1/PD-L2 are also frequently seen in patients with primary mediastinal large B-cell lymphoma (PMBL) (~70%), EBV-negative primary central nervous system lymphoma (PCNSL) (~60%), and primary testicular lymphoma (PTL) (~60%) [43–45]. Immunohistochemistry shows that approximately 70%, 50% and 50% of PMBL, PCNSL and PTL tumors, respectively, express PD-L1, supporting the idea that PD-L1 expression is induced by cytogenetic abnormalities [41,44] (Fig. 3).

In DLBCL, not otherwise specified (DLBCL, NOS), PD-L1 expression is seen in 11–26% of cases by immunohistochemistry [41,46,47] (Fig. 3). Interestingly, a similar percentage (~20%) of cytogenetic abnormalities in 9p24.1 (gains, amplifications or translocations) is also observed in these cases [43,46,47]. Gains and amplifications of 9p24.1 and translocations of PD-L1 correlate with increased PD-L1 mRNA expression and PD-L1 protein expression. Furthermore, cytogenetic abnormalities in 9p24.1 and PD-L1 protein expression are associated with activated B-cell-like or non-germinal center B cell-like phenotype of DLBCL, as determined by gene expression profiling and Hans classification, respectively.

Expression of PD-L1 in normal tissue

PD-1 is expressed in activated CD4+ and CD8+ T cells, naive and activated B cells, myeloid dendritic cells, and with low intensity in monocytes. It is not expressed in resting T cells, but its expression can be induced within 24 h of T cell activation [28]. In normal human tissue, PD-L1 expression is seen on follicular T-cells, macrophages and a subset of dendritic cells in lymphoid tissue, placental syncytiotrophoblasts, and dendritic cells/monocytes in the lung and liver, although low levels of PD-L1 mRNA are seen in almost all normal tissue [28–30]. Expression of PD-L2 is more restricted compared with PD-L1. Low levels of PD-L2 expression are seen in activated CD4+ or CD8+ T cell subsets, myeloid dendritic cells, monocytes, endothelial cells, and placental syncytiotrophoblasts [31]. Expression of PD-L1 and PD-L2 is induced by inflammatory signals such as interferon gamma (IFN-γ), granulocyte macrophage colony-stimulating factor (GM-CSF), and IL-4 [27,32–34].

Fig. 3. Images of various lymphoid neoplasms with PD-L1 expression. A–B. Diffuse large B-cell lymphoma, not otherwise specified. Hematoxylin and eosin (A, ×400) and PD-L1 stain (B, ×400). C–D. Primary mediastinal large B-cell lymphoma. Hematoxylin and eosin (C, ×400) and PD-L1 stain (D, ×400). E–F. Epstein–Barr virus-positive diffuse large B-cell lymphoma, not otherwise specified. Hematoxylin and eosin (E, ×400) and PD-L1 stain (F, ×400). G–H. Primary central nervous system lymphoma. Hematoxylin and eosin (G, ×400) and PD-L1 stain (H, ×400). I–J. Primary testicular lymphoma. Hematoxylin and eosin (I, ×400) and PD-L1 stain (J, ×400). All PD-L1 stains were performed using SP142 clone (Spring Bioscience, Pleasanton, CA, USA).
A Japanese study determined that PD-L1 expression in DLBCL is an independent indicator of poor prognosis [47]. Available data suggest that, in DLBCL patients, the PD-1 pathway could be an immune escape mechanism and that patients with PD-1 expression could be good candidates for anti-PD-1 or anti-PD-L1 therapies.

EBV provides an intrinsic signal to augment PD-L1 expression. EBV latent membrane protein 1 (LMP1) activates the JAK/STAT pathway and the transcription factor AP-1; this enables JAK3 to activate a PD-L1 promoter and AP-1 to stimulate a PD-L1 enhancer [48–50]. Chen et al. [41] have shown that PD-L1 expression in RS cells is more commonly present in EBV-positive CHL than in EBV-negative CHL. Similarly, PD-L1 expression is seen in all cases of EBV-positive diffuse large B-cell lymphoma (EBV+ DLBCL) and EBV-positive immunodeficiency–related DLBCL [41] (Fig. 3). Unlike EBV-negative PCNSL, EBV-positive PCNSL frequently express PD-L1 without 9p24.1/p16/PD-L2 copy number alterations, suggesting that PD-L1 expression is induced by viral proteins [44]. Other EBV-associated lymphoproliferative disorders including EBV+ post-transplant lymphoproliferative disorder (PTLD), plasmablastic lymphoma, primary effusion lymphoma, and extranodal NK-T-cell lymphoma express PD-L1 in approximately 60%, 50%, 50% and 70%, respectively [41,50].

Chen and colleagues showed that 91% of T-cell rich, histiocytetype-rich large B-cell lymphomas (TCHRBLs) express PD-L1, compared to only 13% of nodular lymphocyte predominant Hodgkin lymphomas (NLPHLs) [41]. Since TCHRBL and NLPHL have considerable morphologic overlap but opposite clinical behaviors, this finding is very intriguing [51]. One can speculate that acquiring PD-L1 expression is an immune escape mechanism of indolent NLPHL and that leads to more aggressive TCHRBL. Of note, histiocytes adjacent to lymphoma cells also show strong PD-L1 expression in TCHRBL, suggesting that both tumor cells and background inflammatory cells contribute immune escape signals [41]. Since 9p24.1 aberrations and EBV infection are not generally seen in TCHRBL, PD-L1 is thought to be induced by IFN-γ secreted from tumor-infiltrating T-cells [52].

Another intrinsic mechanism of increased PD-L1 expression was revealed by Kataoka and colleagues, who showed that increased PD-L1 expression is associated with PD-L1 3′-untranslated region (UTR) disruption in about 30% and 10% of adult T-cell leukemia/lymphoma patients and DLBCL patients, respectively [53]. Of interest, PD-L1 expression induced by 3′-UTR disruption with truncated protein was only seen when an antibody was directed against the extracellular domain and not when an antibody was directed against the cytoplasmic domain. Whether 3′-UTR disruption in PD-L1 is present in other lymphoid neoplasms is still unknown.

PD-L1 expression also occurs through constitutive activation of the JAK/STAT pathway. In ALK+ anaplastic large cell lymphoma with NPM-ALK rearrangement, the fusion transcript has been shown to induce expression of PD-L1 via STAT3 activation [54]. Furthermore, PD-L1 expression in DLBCL correlates the ABC phenotype, which is known for its enhanced JAK/STAT pathway [55].

PD-L1 expression in myeloma cells can be detected by flow cytometry [56]. Significant increase in copy number of PD-L1 and PD-L1 mRNA expression is seen in malignant myeloma cells, which correlates with PD-L1 expression in myeloma cells [56]. Compared with normal plasma cells, PD-L1 expression is up-regulated in non-hyperdiploid and hyperdiploid myeloma cells, with higher expression in the latter. However, PD-L1 expression is not associated with del(1q), del(13), del(17p), t(11;14), t(4;14) or t(14;16).

PD-L1 expression is not generally seen in follicular lymphoma, mantle cell lymphoma, marginal zone lymphoma, Burkitt lymphoma or chronic lymphocytic leukemia/small lymphocytic lymphoma [57,58].

Expression of PD-L2 in lymphoid malignancies

Lymphoid neoplasms with abnormalities in 9p24.1/PD-L1/PD-L2 generally express PD-L2. RS cells in CHL also express PD-L2, irrespective of EBV status [59]. PD-L2 expression by immunohistochemistry occurs in 72% of PMBL, and copy number gain of PDCD1LG2 gene has also been observed in most cases [60]. PD-L2 expression is also present in PTLDs and PCNSLs, which are associated with 9p24.1/PD-L1/PD-L2 copy gains or translocations [44]. However, unlike PD-L1 expression, PD-L2’s expression of RNA and protein were not associated with cytogenetic abnormalities in 9p24.1 in DLBCL, NOS [46]. Also, PD-L2 expression is not associated with EBV infection or 3′-UTR disruption in the PD-L1 gene [53,57].

Expression of PD-1 in the lymphoid malignancy microenvironment

Although PD-1 expression is seen in a few lymphoid malignancies, particularly T cell lymphomas with the follicular helper T cell phenotype, most lymphoid neoplasms do not express PD-1 [30,61]. Thus, PD-1 expression is best examined in the microenvironment. PD-1 expression in TILs has been reported in follicular lymphoma, and NLPHL is well known for PD-1-expressing T-cell rosettes surrounding neoplastic L&H cells (LP cells or popcorn cells) [62,63]. Since both neoplasms arise from germinal center B cells, it is not surprising that their microenvironments are like those of their normal counterparts. Likewise, PD-1-expressing TILs are also correlated with DLBCL, germinal center B-cell-like (GCB) phenotype [47]. Interestingly, the high number of PD-1-expressing TILs in the DLBCL microenvironment is inversely associated with PD-L1 expression in lymphoma cells. Furthermore, contrary to observations in solid tumors, the high number of PD-1-expressing TILs in DLBCL and in follicular lymphoma (FL) is associated with a favorable prognosis; this suggests that the presence of PD-1-expressing
TILs in lymphomas could simply indicate cell-of-origin, unlike tumor-mediated T-cell exhaustion in solid tumors [47.62,64,65].

Anti-PD-1 antibodies

Pembrolizumab (Keytruda®, MK-3475, SCH 900475, previously lambrolizumab)

Pembrolizumab is a fully humanized IgG4 kappa isotype anti-PD-1 monoclonal antibody. It is well tolerated and is associated with durable anti-tumor activity in multiple solid tumors [66]. In a phase 1b study (KEYNOTE-013 study, NCT01953682), pembrolizumab was administered to 31 patients with CHL every 2 weeks (10 mg/kg IV) until disease progression [67]. The median age was 32 years (range, 20–67 years). Seventeen (55%) patients had >5 lines of prior therapy, 31 (100%) failed with brentuximab vedotin (BV) treatment, 22 (71%) underwent prior autologous stem cell transplant (ASCT), and 8 (26%) were ineligible for transplantation. Examination of formalin-fixed, paraffin-embedded tissue revealed PD-L1 (clone 22C3) and PD-L2 (clone 3G2) expression in 94% and 90% of tested patients, respectively, before pembrolizumab treatment. With the median follow-up of 17.6 months (range, 10.6–22.5 months), the overall response rate (ORR) was 65%, with 5 (16%) and 15 (48%) patients achieving complete remission (CR) and partial remission (PR), respectively. Among the 20 patients, 16 (80%) achieved their best response around 12th week of therapy and 14 (70%) had ≥24 weeks of duration. The progression-free survival (PFS) rates were 69% and 46% at 24 weeks and 52 weeks, respectively. By flow cytometry, expansion of circulating total T cells, including CD4+ and CD8+ T cells, and NK cells was observed at cycle 7 compared to baseline. RNA profiling showed significant increases in the IFN-γ-induced, expanded immune-related, and TCR signatures [67].

A multicohort phase 2 study is underway (KEYNOTE-087, NCT02455394) to confirm the clinical activity of pembrolizumab in CHL patients. Patients, all of whom have relapsed/refractory CHL, are in 3 cohorts of those who: (1) had an ASCT and subsequent BV therapy, (2) are ineligible for ASCT due to unresponsiveness to salvage chemotherapy and BV failure, or (3) had an ASCT without BV therapy. At the time of writing, interim analysis of cohorts 1 (n = 30; median age, 36 years) and 2 (n = 30; median age, 33 years) has been reported. Similar to the phase 1b study, 40 (67%) patients had ≥4 lines of prior therapies. In cohort 1, the ORR was 70%, with 6 (20%) and 15 (50%) patients achieving CR and PR, respectively. In cohort 2, the ORR was 80%, with 8 (27%) and 16 (53%) patients achieving CR and PR, respectively [68].

A phase 1 study of pembrolizumab given in combination with lenalidomide and low-dose dexamethasone to patients with relapsed/refractory plasma cell myeloma determined that the maximum tolerated dose/maximum administered dose (MTD/MAD) was a 200-mg fixed dose of pembrolizumab combined with 25 mg lenalidomide and low-dose dexamethasone. In the dose determination/confirmation phase, 17 patients were evaluated. The ORR was 76% (13 patients), including 4 patients with a very good PR and 9 patients with a PR. The median duration of response was 9.7 months (range: 0–16.7 months). Updated efficacy data, including data for additional 33 patients in the expansion phase, are forthcoming (KEYNOTE-023, NCT02036502) [69,70].

Table 2 lists numerous ongoing clinical trials of pembrolizumab given as a single therapy or in combination with other therapies.

Nivolumab (Opdivo®, BMS-936558, MDX-1106, ONO-4538)

Nivolumab is a fully human IgG4 anti-PD-1 monoclonal antibody. It has a high affinity for PD-1 and blocks it from binding to its ligands. Like pembrolizumab, it is well tolerated and is associated with durable anti-tumor activity in solid tumors [71]. In a phase 1b study, 23 patients with relapsed/refractory CHL in whom ASCT and BV was unsuccessful, received 3 mg/kg nivolumab at week 1, week 4, and then every 2 weeks until disease progression or CR or for a maximum of 2 years (NCT01592370) [37]. The median age was 35 years (range, 20–54 years). Twenty (87%) patients had received ≥3 lines of prior therapies, 18 (78%) had received BV, and 18 (78%) had undergone ASCT. Ten (43%) patients were tested for PD-L1 and PD-L2 with FISH, and all had polysomy 9p and gain or amplification of PD-L1/PD-L2. Expression of PD-L1 (clone 405.9A11) and PD-L2 (366C.9E5) was seen in all 10 tested patients. At the median follow-up of 40 weeks (range, 0–75 weeks), the ORR was 87%, with 4 (17%) and 16 (70%) patients achieving CR and PR, respectively. Twelve (60%) patients achieved CR or PR by 8 weeks. The PFS rate was 86% at 24 weeks. The median overall survival duration had not been reached [37].

A subsequent phase 2 study (CHECKMATE 205 cohort B, NCT02181738) recruited 80 patients with relapsed/refractory CHL who received nivolumab (3 mg/kg IV) every 2 weeks. Independent radiologic review committee (IRRC)-determined ORR was 66%, including CR and PR rates of 8.8% and 57.5%, respectively. The investigator-determined ORR was 73%, including CR and PR of 27.5% and 45%, respectively. At the median follow-up of 8.9 months, the IRRC 6-month overall survival and PFS rates were 99% and 77%, respectively. Notably, 43 patients with no prior BV response showed an IRRC ORR of 72% with nivolumab treatment [72].

A Japanese phase 2 study gave 17 patients with relapsed/refractory CHL nivolumab (3 mg/kg) on day 1 of a 14-day cycle. All patients had previously been treated with BV. The ORR in efficacy-evaluable patients was 75%, including 4 (25%) and 8 (50%) patients with CR and PR, respectively. Among 8 BV-resistant patients in the study, 3 had a CR, 4 had a PR and 1 was not evaluable at that time point were observed (JapicCTI-142755) [73].

In a phase 1 study, 81 patients with B-cell lymphoma (n = 31, including DLBCL [n = 11], and FL [n = 10]), T cell lymphoma (n = 23), and plasma cell myeloma (n = 27) were treated with nivolumab alone (NCT01592370). All patients had received prior systemic treatment regimens (median 3; range, 1–12). Among the 11 patients with DLBCL, the ORR was 36%, 2 of these patients had a CR, and 2 had a PR. At the median follow-up duration of 22.7 weeks, individual response durations were 6 and 73.3+ weeks for the patients with CR and 12.1+ and 22.1+ weeks for the patients with PR, respectively. The ORR of patients with FL was 40%, including 1 patient with CR and 3 patients with PR. At the median follow-up duration of 91.4 weeks, individual response durations were 81.6+ weeks for the patient with CR and 27.1+, 28.1+, and 32.1+ weeks for the patients with PR. Objective responses were not seen in the 10 patients with other B-cell lymphomas. Among the 23 patients with T cell lymphoma, the response rate was 17% (n = 4), and all responding patients had PR. Individual response durations were 24.3+, 50+, 10.6, and 78.6+ weeks. For patients with plasma cell myeloma, stable disease was the best response in 17 (63%) patients. The response lasted a median of 11.4 weeks (range, 3.1–46.1 weeks) [74].

Table 2 lists numerous ongoing clinical trials of nivolumab given as a single therapy or in combination with other therapies.

Other anti-PD-1 antibodies

Clinical trials are underway with other anti-PD-1 antibodies (AMP-514, PDR001, REGN2810, BGB-A317, PF-06801591 and AMP-224), but results have not been publicized yet (Table 2).
<table>
<thead>
<tr>
<th>Class</th>
<th>Agent</th>
<th>Intervention</th>
<th>Condition</th>
<th>Phase</th>
<th>Clinical trial ID</th>
<th>Other title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anti-PD-1 antibody</td>
<td>Pembrolizumab</td>
<td>Single therapy</td>
<td>R/R or disseminated malignant neoplasms including NHL or CHL in HIV-positive patients</td>
<td>I</td>
<td>NCT02195866</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>PD-L1-positive R/R lymphoma in pediatric patients</td>
<td>I/II</td>
<td>NCT02332668</td>
<td>KEYNOTE-051</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Single therapy</td>
<td>CD19 + DLBCL, FL, or MCL who failed anti-CD19 CAR-T</td>
<td>I/II</td>
<td>NCT02650999</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Single therapy</td>
<td>R/R MF/SS</td>
<td>II</td>
<td>NCT02243579</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Single therapy</td>
<td>R/R PMBL</td>
<td>II</td>
<td>NCT02576990</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Single therapy</td>
<td>Recurrent PCNSL</td>
<td>II</td>
<td>NCT02779101</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Single therapy</td>
<td>R/R PTCL</td>
<td>II</td>
<td>NCT02331368</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Single therapy</td>
<td>In the lymphocyte recovery phase after high-dose chemotherapy and ASCT in PCM</td>
<td>II</td>
<td>NCT02603887</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pembrolizumab with dinaciclib</td>
<td>Single therapy</td>
<td>R/R CLL/SL, PCM, or DLBCL</td>
<td>Ib</td>
<td>NCT02684617</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pembrolizumab with AFM13</td>
<td>Single therapy</td>
<td>R/R CHL</td>
<td>Ib</td>
<td>NCT026656650</td>
<td>KEYNOTE-026</td>
</tr>
<tr>
<td></td>
<td>G100 with or without pembrolizumab</td>
<td>Single therapy</td>
<td>FL or MZL</td>
<td>I/II</td>
<td>NCT02591473</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pembrolizumab with INC024360</td>
<td>Single therapy</td>
<td>Cancers including DLBCL</td>
<td>I/II</td>
<td>NCT02178722</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pembrolizumab with ACP-196</td>
<td>Single therapy</td>
<td>Hematologic malignancies including NHL, PCM, Hodgkin lymphoma, CLL with or without Richter's syndrome, and Waldenstrom macroglobulinemia</td>
<td>II</td>
<td>NCT02362035</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pembrolizumab with ponalidomide</td>
<td>Single therapy</td>
<td>R/R PCM</td>
<td>I/II</td>
<td>NCT02289222</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pembrolizumab with ubilutiximab and TGR-1202</td>
<td>Single therapy</td>
<td>R/R CLL/SL, PCM, or DLBCL</td>
<td>I/II</td>
<td>NCT02535286</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pembrolizumab with idelislib or ibrutinib</td>
<td>Single therapy</td>
<td>R/R low-grade B-cell lymphoma</td>
<td>II</td>
<td>NCT02332980</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pembrolizumab with rituximab</td>
<td>Relapsed FL</td>
<td>Relapsed FL in patients with residual disease after treatment</td>
<td>II</td>
<td>NCT02446457</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pembrolizumab as consolidation therapy</td>
<td>R/R DLBCL or CHL</td>
<td>Stage III/IV untreated or relapsed FL</td>
<td>II</td>
<td>NCT02362997</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pembrolizumab as consolidation therapy after ASC</td>
<td>R/R DLBCL or CHL</td>
<td>Treatment naïve PCM</td>
<td>III</td>
<td>NCT02579863</td>
<td>KEYNOTE-185</td>
</tr>
<tr>
<td></td>
<td>Pembrolizumab with sequential intranodal immunotherapy</td>
<td>R/R CHL</td>
<td>Previously untreated DLBCL</td>
<td>III</td>
<td>NCT022541565</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pembrolizumab with BV</td>
<td>Barely disease or low-dose dexamethasone</td>
<td>Relapsed hematologic malignancies after allogeneic SCT</td>
<td>I</td>
<td>NCT01822509</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pembrolizumab with R-CHOP</td>
<td>Single therapy</td>
<td>R/R patients who failed ASC or were ineligible for ASC</td>
<td>II</td>
<td>NCT02308933</td>
<td>CheckMate139</td>
</tr>
<tr>
<td></td>
<td>Pembrolizumab with ipilimumab and BV</td>
<td>Single therapy</td>
<td>R/R hemotologic malignancies</td>
<td>I</td>
<td>NCT01592370</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pembrolizumab with RRX-001</td>
<td>Single therapy</td>
<td>Advanced lymphoma or solid tumors</td>
<td>I</td>
<td>NCT02518958</td>
<td>PRIMETIME</td>
</tr>
<tr>
<td></td>
<td>Nivolumab with ipilimumab and BV</td>
<td>Single therapy</td>
<td>R/R cancers including lymphoid neoplasms in young (12 months to 30 years) patients</td>
<td>I/II</td>
<td>NCT02304458</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Nivolumab with ibrutinib</td>
<td>Single therapy</td>
<td>SLI/CLL, FL, and DLBCL</td>
<td>I/II</td>
<td>NCT02329847</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Nivolumab with urelumab</td>
<td>Single therapy</td>
<td>Advanced B-cell NHLs</td>
<td>II</td>
<td>NCT02253992</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Nivolumab with INC024360</td>
<td>Single therapy</td>
<td>Cancers including DLBCL and CHL</td>
<td>II</td>
<td>NCT02327078</td>
<td>ECHO-204</td>
</tr>
<tr>
<td></td>
<td>Nivolumab with BV</td>
<td>Single therapy</td>
<td>R/R CHL after failure of frontline therapy</td>
<td>I/II</td>
<td>NCT02572167</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Nivolumab with BV</td>
<td>Single therapy</td>
<td>R/R NHLs (DLBCL, PTCL and MF/SS) with CD30 expression</td>
<td>I/II</td>
<td>NCT02581631</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Nivolumab with BMS-986016</td>
<td>Single therapy</td>
<td>R/R B-cell lymphoma</td>
<td>I/II</td>
<td>NCT02061761</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Nivolumab with ipilimumab</td>
<td>Single therapy</td>
<td>Lymphoma or myeloma (in patients who are at high-risk for post-transplant recurrence after ASCT)</td>
<td>II</td>
<td>NCT02681302</td>
<td>CPIT001</td>
</tr>
<tr>
<td></td>
<td>Nivolumab with ACD</td>
<td>Single therapy</td>
<td>Newly diagnosed DLBCL</td>
<td>II</td>
<td>NCT02181738</td>
<td>CheckMate205 cohort D</td>
</tr>
<tr>
<td>Class</td>
<td>Agent</td>
<td>Intervention</td>
<td>Condition</td>
<td>Phase</td>
<td>Clinical trial ID</td>
<td>Other title</td>
</tr>
<tr>
<td>-------</td>
<td>-------</td>
<td>--------------</td>
<td>-----------</td>
<td>-------</td>
<td>-----------------</td>
<td>-------------</td>
</tr>
<tr>
<td>Anti-PD-1 antibody</td>
<td>Nivolumab with ibrutinib</td>
<td>Single therapy</td>
<td>R/R or high-risk untreated CLL/SLL</td>
<td>II</td>
<td>NCT02420912</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Nivolumab with BV</td>
<td>Single therapy</td>
<td>Untreated CHL in older (≥60 years) patients</td>
<td>II</td>
<td>NCT02758717</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Single therapy</td>
<td>Nivolumab, pomalidomide, and dexamethasone</td>
<td>III</td>
<td>NCT02725581</td>
<td>CheckMate602</td>
</tr>
<tr>
<td>Anti-PD-1 antibody</td>
<td>AMP-514</td>
<td>Single therapy</td>
<td>R/R aggressive B-cell lymphomas who have failed 1–2 prior lines of therapy</td>
<td>lb/II</td>
<td>NCT027279145</td>
<td></td>
</tr>
<tr>
<td>Anti-PD-1 antibody</td>
<td>Pf-06801591</td>
<td>Single therapy</td>
<td>R/R CHL and other solid tumors</td>
<td>I</td>
<td>NCT02573259</td>
<td></td>
</tr>
<tr>
<td>Anti-PD-1 antibody</td>
<td>PDR001</td>
<td>Single therapy</td>
<td>Advanced lymphoma or solid tumors</td>
<td>I</td>
<td>NCT02740270</td>
<td></td>
</tr>
<tr>
<td>Anti-PD-1 antibody</td>
<td>REGN2810</td>
<td>Single therapy</td>
<td>Lymphoma</td>
<td>I</td>
<td>NCT02651662</td>
<td></td>
</tr>
<tr>
<td>Anti-PD-1 antibody</td>
<td>BGB-A317</td>
<td>Single therapy</td>
<td>R-cell lymphoid malignancies</td>
<td>I</td>
<td>NCT02795182</td>
<td></td>
</tr>
<tr>
<td>Anti-PD-L1 antibody</td>
<td>Atezolizumab</td>
<td>Single therapy</td>
<td>R/R or post-ASCT PCM</td>
<td>lb</td>
<td>NCT02431208</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Atezolizumab with obinutuzumab</td>
<td>Single therapy</td>
<td>R/F or DLBCL</td>
<td>I</td>
<td>NCT02220842</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Atezolizumab with obinutuzumab and polatuzumab vedotin</td>
<td>Single therapy</td>
<td>R/F or DLBCL</td>
<td>lb/II</td>
<td>NCT02729896</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Atezolizumab with obinutuzumab and lenalidomide</td>
<td>Single therapy</td>
<td>R/F</td>
<td>lb/II</td>
<td>NCT02631577</td>
<td></td>
</tr>
<tr>
<td>Anti-PD-L1 antibody</td>
<td>Durvalumab</td>
<td>Single therapy</td>
<td>Unilateral or R/F or DLBCL</td>
<td>lb/II</td>
<td>NCT02956971</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Atezolizumab, obinutuzumab and bendamustine or CHOP</td>
<td>Single therapy</td>
<td>R/F lymphoma, solid tumor, and CNS tumors in Pediatric (1 year to 17 years) patients</td>
<td>I</td>
<td>NCT02793466</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Single therapy</td>
<td>with or without low-dose dexamethasone</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Single therapy or with pomalidomide and with or without low-dose dexamethasone</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Durvalumab with anti-CD19 CAR-T</td>
<td>Single therapy</td>
<td>R/F DLBCL</td>
<td>I</td>
<td>NCT02549651</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Durvalumab with tremelimumab and ASCT</td>
<td>Single therapy</td>
<td>PCM</td>
<td>I</td>
<td>NCT02716805</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Durvalumab with tremelimumab and poly ICLC</td>
<td>Single therapy</td>
<td>Advanced cancers including cutaneous T-cell lymphoma</td>
<td>I/II</td>
<td>NCT02643303</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Durvalumab with ibrutinib</td>
<td>Single therapy</td>
<td>R/F or DLBCL</td>
<td>I/II</td>
<td>NCT02401048</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Durvalumab with lenalidomide with or without dexamethasone</td>
<td>Single therapy</td>
<td>Newly diagnosed PCM</td>
<td>I/II</td>
<td>NCT02685826</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Durvalumab with daratumumab</td>
<td>Single therapy</td>
<td>R/F PCM</td>
<td>I/II</td>
<td>NCT02807454</td>
<td>FUSIONMM-003</td>
</tr>
<tr>
<td></td>
<td>Durvalumab, ibrutinib, rituximab, bendamustine, lenalidomide</td>
<td>Single therapy</td>
<td>CLL/SLL or other lymphoma</td>
<td>I</td>
<td>NCT02733042</td>
<td>FUSION NHL 001</td>
</tr>
<tr>
<td>Anti-PD-L1 antibody</td>
<td>Avelumab</td>
<td>Single therapy</td>
<td>Previously treated advanced stage CHL</td>
<td>I</td>
<td>NCT02603419</td>
<td>JAVELIN HODGKINS</td>
</tr>
<tr>
<td>Anti-PD-L1 antibody</td>
<td>CA-170</td>
<td>Single therapy</td>
<td>Advanced lymphoma or solid tumors</td>
<td>I</td>
<td>NCT02812875</td>
<td></td>
</tr>
</tbody>
</table>

Dinaciclib (MK-7965), a cyclin-dependent kinase inhibitor; AFM13, a bispecific, tetravalent chimeric antibody construct against CD30 and CD16A; G100, a potent toll-like receptor-4 agonist; INC024360 (Epacadostat), an indoleamine 2,3-dioxygenase 1 inhibitor; ACP-196 (Acalabrutinib), a more selective, irreversibly acting Bruton's Tyrosine kinase inhibitor; Pomalidomide, a derivative of thalidomide; Obinutuzumab (TG-1101 or UTX), a novel, chimeric monoclonal antibody targeting a unique epitope on the CD20 antigen; TGR-1202, a PI3K δ inhibitor; Idecalisib, a PI3K δ inhibitor; Brustinib, a Bruton's Tyrosine kinase inhibitor; Rituximab, a monoclonal antibody against the protein CD20; ASCIT, autologous stem cell transplant; BV (Brentuximab vedotin), an antibody-drug conjugate directed to the protein CD30; lenalidomide, a derivative of thalidomide; R-CHOP; combination of rituximab, cyclophosphamide, doxorubicin, vincristine and prednisone; Ipi邻isolubumab, a monoclonal antibody targeting CTLA-4; Lirilumab, an anti-KIR monoclonal antibody; BR-R-001, a pan-epigenetic anticancer agent; Urelumab, an anti-CD137 monoclonal antibody; RMS-986016, an anti-LAG-3 monoclonal antibody (an immune checkpoint inhibitor); AVD, combination of doxorubicin, vinblustine and Dacarbazine; MEDI-551, an anti-19 monoclonal antibody; GWN323, an anti-GITR antibody (GITR: glucocorticoid-induced tumor necrosis factor receptor); BGB-3111, a Bruton's Tyrosine kinase inhibitor; Obinutuzumab, a humanized anti-CD20 monoclonal antibody; Polatuzumab vedotin, an anti-CD79b antibody-drug conjugate; Tremelimumab, an anti-CTLA-4 antibody; AZD9150, an anti-STAT3 inhibitor; CAR-T, chimeric antigen receptor T-cell therapy; Polyclonal, a toll-like receptor-3 agonist; Daratumumab, a monoclonal anti-CD38 antibody; HIV, human immunodeficiency virus; R/R, relapsed and refractory; NHL, non-Hodgkin lymphoma; CHL, classical Hodgkin lymphoma; DLBCL, diffuse large B-cell lymphoma; FL, follicular lymphoma; MCL, mantle cell lymphoma; MF/SS, mycosis fungoides/Sezary syndrome; PMBL, primary mediastinal (thymic) large B-cell lymphoma; PCNSL, primary central nervous system lymphoma; PTCL, peripheral T-cell lymphoma; PV, plasma cell myeloma; CHL, chronic lymphocytic leukemia/small lymphocytic lymphoma; MZL, marginal zone lymphoma; ST, stem cell transplant; CNS, central nervous system.
Pdilizumab (CT-011, MDV9300, previously CT-AcTibody or BAT)

Pdilizumab was originally regarded as an anti-PD-1 antibody. However, Medivation, the company holding the right of pdilizu-

mab, announced via a U.S. Securities and Exchange Commission fil-
ing in January 2016 that pdilizumab is not an inhibitor of PD-1
[75]. The Food and Drug Administration placed a partial clinical
hold on a phase 2 clinical trial of the drug in patients with relapsed
or refractory DLBCL, but it lifted the hold in March 2016 [76].
Although the drug showed positive results in patients with follicu-
lar lymphoma and DLBCL, its mechanism of action needs to be elu-
cidated [77,78].

Anti-PD-L1 antibodies

There are several ongoing clinical trials with anti-PD-L1 anti-
bodies (atezolizumab, durvalumab, avelumab and CA-170) in
patients with lymphoid neoplasms, but results have not been pub-
lished yet (Table 2).

Anti-PD-1/PD-L1 agents in combination with other treatments

Anti-PD-1/PD-L1 antibodies can be combined with other treat-
ments in a myriad of ways. Clinical trials of anti-PD-1/PD-L1 anti-
bodies combined with standard chemotherapy, targeted therapy (i.e., rituximab or BV) or ASCT are plentiful (Table 2). In this review,
we will discuss several approaches to combination therapy with
anti-PD-1/PD-L1 antibodies.

One of the strategies is to combine an anti-PD-1 antibody with an
agent that blocks another co-inhibitory molecules (e.g. CTLA-4
or lymphocyte activation gene 3 [LAG-3]) in T cells. Clinical trials
of nivolumab combined with ipilimumab (an anti-CTLA-4 inhibi-
tor) or BMS-986016 (an anti-LAG-3 inhibitor) are underway in
patients with hematologic malignancies (Table 2). A similar
approach is to combine anti-PD-1/PD-L1 antibodies with uren-
lumab, a cytotoxic T cell- activating drug that binds CD137. The
intend of this approach is not to block two different co-inhibitory
molecules; rather, it is to simultaneously enhance CTL activity
and block inhibitory signals. Preclinical studies have demonstrated
that this combination of anti-PD-1/PD-L1 antibodies and uren-
lumab enhances the anti-tumor activity of T cells [26,79]. A phase 1 clin-
ical trial of nivolumab plus urenlumab is now underway in patients
with advanced B-cell non-Hodgkin lymphoma.

Combination therapy with anti-PD-1/PD-L1 antibodies can
involve modulating the immunosuppressive tumor microen-
vironment. Epigenetic modifying agents disrupt the immunosuppres-
sive tumor microenvironment by eradicating myeloid-derived
suppressor cells or enhancing the effector function of T- and NK
cells [80,81]. Furthermore, treating a human leukemia cell line
with a hypomethylating agent has been shown to augment PD-
L1 and PD-L2 expression [82]. Therefore, combining epigenetic
modifying agents with anti-PD/PD-L1 antibodies is a sensible
approach. Indeed, preclinical and clinical studies report promising
results [83,84]. Several clinical trials are under way (Table 2).

In a melanoma mouse model, the tumor-intrinsic, active Wnt/ji-
catenin pathway induces T cell exclusion in the tumor microen-
vironment and resistance to anti-PD-L1 antibodies [85]. The kinases
FAK and PYK2 augment Wnt/ji-catenin pathway, and a preclinical
study has shown that combining a FAK/PYK2 dual inhibitor (VS-
4718) with an anti-PD-1 monoclonal antibody is more effective
than anti-PD-1 therapy alone and extended survival in vivo [86].
Combining VS-4718 and an anti-PD-1 monoclonal antibody also
increases the CD6+ T cell: regulatory T cells ratio, suggesting an
attractive approach to modulating the tumor microenvironment
to enhance the anti-tumor activity of anti-PD-1 antibodies [87,88].

Immune-related adverse events

Thanks to the clinical success of nivolumab and pembrolizumab
in solid tumors, the list of tumors treatable with anti-PD-1 or anti-
PD-L1 antibodies is expanding. Therefore, clinicians would observe
more patients with immune related adverse events (irAEs). Overall,
grade 3 or 4 irAEs are observed in 7–12% of patients with solid
tumors who receive single anti-PD-1 or anti-PD-L1 antibodies
[39,93]. Of note, a predictable pattern of irAEs has been observed
in such patients; dermatologic and gastrointestinal toxicities
appear early, and hepatic toxicities or endocrinopathies are seen
later [94].

In patients with lymphoid neoplasms, irAEs of any grade appear
in 72%-100% of patients [37,67,69,72–74]. Common irAEs include
thrombocytopenia, neutropenia, fatigue, infusion reaction,
hypothyroidism, rash, diarrhea, nausea, pyrexia, pneumonia, diar-
rhea, fatigue, back pain, decrease in platelets, dry skin, and cough
[67–69,72]. Grade 3 or higher irAEs are observed in 11–22% of
patients and include interstitial pneumonia, pneumonitis, colitis,
gastrointestinal inflammation, increased alanine aminotrans-
ferase/aspartate aminotransferase levels, pancreatitis, nephrotic
syndrome, fulminant type 1 diabetes mellitus, myelodysplastic
syndrome, leukopenia, thrombocytopenia, septic meningitis,
pyrexia, infusion reaction, joint swelling, pain, stomatitis, tumor
progression, and arrhythmia [37,67,72–74].

The management of irAEs depends on their severity. Patients
with grade 1 irAEs may continue PD-1-targeted therapy if symp-
toms are not observed, but it is recommended to withhold anti-
PD-1 therapy from those with grade 2 irAEs and to manage symp-
toms with oral prednisone (1 mg/kg/day) or an equivalent drug.
Patients with irAEs of grade 3 or higher should discontinue anti-
PD-1 therapy and be treated with intravenous methylprednisolone
(2–4 mg/kg/day) or an equivalent drug. Daily monitoring with liver
function test is also recommended [95].
Conclusion

Programmed death-1 (PD-1) is a co-inhibitory molecule and is seen in CD4+ and CD8+ T cells. Upon binding to its ligands, programmed death ligand-1 (PD-L1) and -2 (PD-L2), PD-1 negatively regulates interleukin 2 (IL-2) production and T cell proliferation. PD-L1 expression in normal tissue is limited, but its expression in tumor cells can be induced by extrinsic signals (e.g., IFN-γ). In various lymphoid neoplasms, PD-L1 expression can also be induced by extrinsic signals, including (1) genetic aberrations involving 9p24.1 encompassing PD-L1, PD-L2 and JAK2; (2) latent EBV infection, particularly by LMP1; (3) PD-L1 3’-UTR disruption; and (4) the activated JAK/STAT pathway. Clinical use of PD-1-pathway-blocking agents has successfully treated some lymphoid neoplasms, particularly those with PD-L1 expression induced by intrinsic signals. Currently, combination therapies involving anti-PD-1/PD-L1 agents and conventional chemotherapies, targeted therapies, or other immunotherapies are being studied, and we expect that the resulting data will broaden our understanding of the PD-1 pathway and expand the list of patients who will benefit from PD-1-pathway-blocking agents to include those who suffer from lymphoid neoplasms.

Conflict of interest

The author declare that there is no conflicts of interest.

Acknowledgements and Funding Sources

The work was supported by the National Cancer Institute/ National Institutes of Health, USA (R01CA138688 and 1R1C1A146299). This work was also partially supported by the National Cancer Institute and National Institutes of Health grants P50CA136411 and P50CA142509, and by MD Anderson’s Cancer Center Support Grant CA016672. KHY is also supported by The University of Texas MD Anderson Cancer Center Institutional Research and Development Fund, an Institutional Research Grant Award, an MD Anderson Cancer Center Lymphoma Specialized Programs on Research Excellence (SPORE) Research Development Program Award, an MD Anderson Cancer Center Myeloma SPORE Research Development Program Award, a Gunderson Lutheran Medical Foundation Award, and MD Anderson Cancer Center Collaborative Funds with Roche Molecular System, Gilead Pharmaceutical, Dai Sanyo Pharmaceutical, Adaptive Biotechnology, Seattle Genetics, and HTG Molecular Diagnostics, and is partially supported by grants from the National Cancer Institute/National Institutes of Health (P50CA136411 and P50CA142509).

References

学霸图书馆

www.xuebalib.com

本文献由“学霸图书馆-文献云下载”收集自网络，仅供学习交流使用。

学霸图书馆（www.xuebalib.com）是一个“整合众多图书馆数据库资源，提供一站式文献检索和下载服务”的24小时在线不限IP图书馆。

图书馆致力于便利、促进学习与科研，提供最强文献下载服务。

图书馆导航：

图书馆首页 文献云下载 图书馆入口 外文数据库大全 疑难文献辅助工具