Variational approach to differential equations with not instantaneous impulses

Liang Bai, Juan J. Nieto

1. Introduction

Non-instantaneous impulsive differential equations were introduced by Hernández & O’Regan in [1], motivated by a simplified situation concerning the hemodynamical equilibrium of a person. This type of equations is a generalization of the classical theory of impulsive differential equations. For some general and recent works on the theory of impulsive differential equations we refer the readers to [2–10].

The existence of solutions of non-instantaneous impulsive problem has been studied via some approaches, such as fixed point theory and theory of analytic semigroup, see, for example, [1,11–15]. The variational structure of general non-instantaneous impulsive problem has not been yet developed and critical point theory, to the best of our knowledge, has not been used to consider this kind of problems.

In this note we present the variational structure associated to the following linear problem with not instantaneous impulses
\[
\begin{aligned}
\begin{cases}
-u''(t) = \sigma_i(t), & t \in (s_i, t_{i+1}], i = 0, 1, \ldots, N, \\
u'(t) = \alpha_i, & t \in (t_i, s_i], i = 1, 2, \ldots, N, \\
u'(s_i^+) = u'(s_i^-), & i = 1, 2, \ldots, N, \\
u(0) = u(T) = 0, & u'(0) = \alpha_0,
\end{cases}
\end{aligned}
\]

where \(0 = s_0 < t_1 < s_1 < t_2 < s_2 < \cdots < t_N < s_N < t_{N+1} = T\), the impulses start abruptly at the points \(t_i\) and keep the derivative constant on a finite time interval \((t_i, s_i]\), \(\sigma_i \in L^2((s_i, t_{i+1}), \mathbb{R})\) and \(\alpha_i\) are given constants. Here \(u'(s_i^+) = \lim_{s \to s_i^+} u'(s)\).

2. Preliminaries

Let \(H^1_0(0, T)\) be the Sobolev space endowed with the inner product

\[
(u, v) = \int_0^T u'(t)v'(t)dt
\]

and the corresponding norm

\[
\|u\| = \left(\int_0^T |u'(t)|^2 dt\right)^{1/2}.
\]

Obviously, \(H^1_0(0, T)\) is a Hilbert space. It is a consequence of Poincaré’s inequality that

\[
\int_0^T |u(t)|^2 dt \leq \frac{1}{\lambda_1} \int_0^T |u'(t)|^2 dt,
\]

where \(\lambda_1 = \pi^2/T^2\). Let \(\|u\|_\infty = \max_{t \in [0, T]} |u(t)|\), then

\[
\|u\|_\infty \leq \beta \|u\|, \quad \text{for every } u \in H^1_0(0, T),
\]

where \(\beta = (T\lambda_1)^{-1/2} + T^{1/2}\). In fact, it follows from the mean value theorem that \(\frac{1}{T} \int_0^T u(s)ds = u(\tau)\) for some \(\tau \in (0, T)\). Hence, for \(t \in [0, T]\), using Hölder inequality,

\[
|u(t)| = \left| u(\tau) + \int_\tau^t u'(s)ds \right| \\
\leq \frac{1}{T} \left| \int_0^T u(s)ds \right| + \int_0^T |u'(t)|dt \leq T^{-1/2}\|u\|_{L^2} + T^{1/2}\|u'\|_{L^2}.
\]

Lemma 1 ([16, Theorem 3.2, Lax–Milgram]). Let \(H\) be a real Hilbert space. Let \(a : H \times H \to \mathbb{R}\) be a bounded bilinear form. If \(a\) is coercive, i.e., there exists \(\delta > 0\) such that \(a(u, u) \geq \delta|u|^2\) for every \(u \in H\), then for any \(f \in H'\) (the dual of \(H\)) there exists a unique \(u \in H\) such that

\[
a(u, v) = \langle f, v \rangle, \quad \text{for every } v \in H.
\]

Moreover, if \(a\) is also symmetric, then the functional \(\varphi : H \to \mathbb{R}\) defined by

\[
\varphi(v) = \frac{1}{2}a(v, v) - \langle f, v \rangle
\]

attains its minimum at \(u\).
3. Main result

Following the ideas of the variational approach to impulsive differential equations of [3,4], for each \(v \in H^1_0(0,T) \), we have

\[
\int_0^T u''(t)v(t)dt = \int_0^{t_1} u''(t)v(t)dt + \sum_{i=1}^{N} \int_{t_i}^{s_i} u''(t)v(t)dt + \sum_{i=1}^{N-1} \int_{s_i}^{t_{i+1}} u''(t)v(t)dt + \int_{s_N}^{T} u''(t)v(t)dt
\]

\[
= -\int_0^T u'(t)v'(t)dt + \sum_{i=1}^{N} \left[u'(t^-_i) - u'(t^+_i) \right] v(t_i) + \sum_{i=1}^{N} \left[u'(s^-_i) - u'(s^+_i) \right] v(s_i),
\]

which combined with (1) yields to

\[
\int_0^T u''(t)v(t)dt = -\int_0^T u'(t)v'(t)dt + \sum_{i=1}^{N} (\alpha_{i-1} - \alpha_i) v(t_i) - \sum_{i=0}^{N-1} \int_{s_i}^{t_{i+1}} \sigma_i(t)dv(t_{i+1}).
\]

(3)

On the other hand,

\[
\int_0^T u''(t)v(t)dt = -\sum_{i=0}^{N} \int_{s_i}^{t_{i+1}} \sigma_i(t)v(t)dt + \sum_{i=1}^{N} \int_{t_i}^{s_i} \frac{d}{dt} [\alpha_i]v(t)dt
\]

\[
= -\sum_{i=0}^{N} \int_{s_i}^{t_{i+1}} \sigma_i(t)v(t)dt.
\]

(4)

Thus, in view of (3), (4) and \(v(t_{N+1}) = v(T) = 0 \), we have

\[
\int_0^T u'(t)v'(t)dt = \sum_{i=0}^{N} \int_{s_i}^{t_{i+1}} \sigma_i(t)(v(t) - v(t_{i+1}))dt + \sum_{i=1}^{N} (\alpha_{i-1} - \alpha_i) v(t_i).
\]

(5)

Considering the aforementioned equality, we introduce the following concept of weak solution for (1).

Definition 1. A function \(u \in H^1_0(0,T) \) is a weak solution of (1) if (5) holds for any \(v \in H^1_0(0,T) \).

Consider the functional \(\Phi : H^1_0 \rightarrow \mathbb{R} \) defined by

\[
\Phi(u) = \frac{1}{2} \int_0^T |u'(t)|^2 dt - \sum_{i=1}^{N} (\alpha_{i-1} - \alpha_i) u(t_i) - \sum_{i=0}^{N} \int_{s_i}^{t_{i+1}} \sigma_i(t)(u(t) - u(t_{i+1}))dt.
\]

It is clear that \(\Phi \in C^1(H^1_0, \mathbb{R}) \) and

\[
\langle \Phi'(u), v \rangle = \int_0^T u'(t)v'(t)dt - \sum_{i=1}^{N} (\alpha_{i-1} - \alpha_i) v(t_i) - \sum_{i=0}^{N} \int_{s_i}^{t_{i+1}} \sigma_i(t)(v(t) - v(t_{i+1}))dt.
\]

Thus critical points of \(\Phi \) correspond to weak solutions of the problem (1).
Defining

\[a : H^1_0(0, T) \times H^1_0(0, T) \to \mathbb{R}, \quad a(u, v) = \int_0^T u'(t)v'(t)dt \]

and \(l : H^1_0(0, T) \to \mathbb{R}, \)

\[l(v) = \sum_{i=0}^{N} \int_{s_i}^{t_{i+1}} \sigma_i(t)(v(t) - v(t_{i+1}))dt + \sum_{i=1}^{N} (\alpha_{i-1} - \alpha_i) v(t_i), \]

we see that finding weak solutions of (1) is equivalent to the problem of finding \(u \in H^1_0(0, T) \) such that

\[a(u, v) = l(v), \quad \text{for every } v \in H^1_0(0, T). \]

It is evident that \(a \) is coercive, bilinear, bounded and symmetric, and that \(l \) is linear and bounded. In fact, using Hölder inequality and (2), we have

\[|l(v)| \leq \sum_{i=0}^{N} \|\sigma_i\|_{L^2(s_i, t_{i+1})} \left(\int_{s_i}^{t_{i+1}} |v(t) - v(t_{i+1})|^2dt \right)^{\frac{1}{2}} + \sum_{i=1}^{N} |\alpha_{i-1} - \alpha_i| \|v(t_i)\| \]

\[\leq 2 \sum_{i=0}^{N} \|\sigma_i\|_{L^2(s_i, t_{i+1})} \left(\int_{s_i}^{t_{i+1}} |v(t)|^2dt \right)^{\frac{1}{2}} + \sum_{i=1}^{N} |\alpha_{i-1} - \alpha_i| \|v\|_{\infty} \]

\[\leq \beta \left[2 \sum_{i=0}^{N} \|\sigma_i\|_{L^2(s_i, t_{i+1})} \frac{1}{2} + \sum_{i=1}^{N} |\alpha_{i-1} - \alpha_i| \right] \|v\|. \]

Thus, by the Lax–Milgram theorem, we have

Theorem 1. Non-instantaneous impulsive problem (1) has a unique weak solution \(u \in H^1_0(0, T) \) for any \(\sigma_i \in L^2(s_i, t_{i+1}) \). Moreover, \(u \) minimizes the functional \(\Phi(u) \).

Acknowledgments

This work has been partially supported by the Ministerio de Economía y Competitividad of Spain under Grant MTM2013-43014-P, XUNTA de Galicia under grant GRC 2015-004, NSFC (Nos. 11401420, 11271371, 51479215, 11326117), SXNSF (Nos. 2013021001-2, 2015011006, 201601D102002), YFTUT(No. 2013T062) and TFTUT (No. tyut-rc201212a).

References

学霸图书馆
www.xuebalib.com

本文献由“学霸图书馆-文献云下载”收集自网络，仅供学习交流使用。

学霸图书馆（www.xuebalib.com）是一个“整合众多图书馆数据库资源，提供一站式文献检索和下载服务”的24小时在线不限IP图书馆。

图书馆致力于便利、促进学习与科研，提供最强文献下载服务。

图书馆导航：
图书馆首页 文献云下载 图书馆入口 外文数据库大全 疑难文献辅助工具